mrfakename commited on
Commit
29189e6
1 Parent(s): 46a543a

Sync from GitHub repo

Browse files

This Space is synced from the GitHub repo: https://github.com/SWivid/F5-TTS. Please submit contributions to the Space there

Files changed (1) hide show
  1. README.md +196 -13
README.md CHANGED
@@ -1,13 +1,196 @@
1
- ---
2
- title: F5-TTS
3
- emoji: 🗣️
4
- colorFrom: green
5
- colorTo: green
6
- sdk: gradio
7
- app_file: app.py
8
- pinned: true
9
- short_description: 'F5-TTS & E2-TTS: Zero-Shot Voice Cloning (Unofficial Demo)'
10
- sdk_version: 5.1.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching
2
+
3
+ [![python](https://img.shields.io/badge/Python-3.10-brightgreen)](https://github.com/SWivid/F5-TTS)
4
+ [![arXiv](https://img.shields.io/badge/arXiv-2410.06885-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2410.06885)
5
+ [![demo](https://img.shields.io/badge/GitHub-Demo%20page-blue.svg)](https://swivid.github.io/F5-TTS/)
6
+ [![space](https://img.shields.io/badge/🤗-Space%20demo-yellow)](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
7
+
8
+ **F5-TTS**: Diffusion Transformer with ConvNeXt V2, faster trained and inference.
9
+
10
+ **E2 TTS**: Flat-UNet Transformer, closest reproduction.
11
+
12
+ **Sway Sampling**: Inference-time flow step sampling strategy, greatly improves performance
13
+
14
+ ## Installation
15
+
16
+ Clone the repository:
17
+
18
+ ```bash
19
+ git clone https://github.com/SWivid/F5-TTS.git
20
+ cd F5-TTS
21
+ ```
22
+
23
+ Install torch with your CUDA version, e.g. :
24
+
25
+ ```bash
26
+ pip install torch==2.3.0+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
27
+ pip install torchaudio==2.3.0+cu118 --extra-index-url https://download.pytorch.org/whl/cu118
28
+ ```
29
+
30
+ Install other packages:
31
+
32
+ ```bash
33
+ pip install -r requirements.txt
34
+ ```
35
+
36
+ ## Prepare Dataset
37
+
38
+ Example data processing scripts for Emilia and Wenetspeech4TTS, and you may tailor your own one along with a Dataset class in `model/dataset.py`.
39
+
40
+ ```bash
41
+ # prepare custom dataset up to your need
42
+ # download corresponding dataset first, and fill in the path in scripts
43
+
44
+ # Prepare the Emilia dataset
45
+ python scripts/prepare_emilia.py
46
+
47
+ # Prepare the Wenetspeech4TTS dataset
48
+ python scripts/prepare_wenetspeech4tts.py
49
+ ```
50
+
51
+ ## Training
52
+
53
+ Once your datasets are prepared, you can start the training process.
54
+
55
+ ```bash
56
+ # setup accelerate config, e.g. use multi-gpu ddp, fp16
57
+ # will be to: ~/.cache/huggingface/accelerate/default_config.yaml
58
+ accelerate config
59
+ accelerate launch train.py
60
+ ```
61
+ An initial guidance on Finetuning [#57](https://github.com/SWivid/F5-TTS/discussions/57).
62
+
63
+ ## Inference
64
+
65
+ To run inference with pretrained models, download the checkpoints from [🤗 Hugging Face](https://huggingface.co/SWivid/F5-TTS), or automatically downloaded with `inference-cli` and `gradio_app`.
66
+
67
+ Currently support 30s for a single generation, which is the **TOTAL** length of prompt audio and the generated. Batch inference with chunks is supported by `inference-cli` and `gradio_app`.
68
+ - To avoid possible inference failures, make sure you have seen through the following instructions.
69
+ - A longer prompt audio allows shorter generated output. The part longer than 30s cannot be generated properly. Consider using a prompt audio <15s.
70
+ - Uppercased letters will be uttered letter by letter, so use lowercased letters for normal words.
71
+ - Add some spaces (blank: " ") or punctuations (e.g. "," ".") to explicitly introduce some pauses. If first few words skipped in code-switched generation (cuz different speed with different languages), this might help.
72
+
73
+ ### CLI Inference
74
+
75
+ Either you can specify everything in `inference-cli.toml` or override with flags. Leave `--ref_text ""` will have ASR model transcribe the reference audio automatically (use extra GPU memory). If encounter network error, consider use local ckpt, just set `ckpt_path` in `inference-cli.py`
76
+
77
+ ```bash
78
+ python inference-cli.py \
79
+ --model "F5-TTS" \
80
+ --ref_audio "tests/ref_audio/test_en_1_ref_short.wav" \
81
+ --ref_text "Some call me nature, others call me mother nature." \
82
+ --gen_text "I don't really care what you call me. I've been a silent spectator, watching species evolve, empires rise and fall. But always remember, I am mighty and enduring. Respect me and I'll nurture you; ignore me and you shall face the consequences."
83
+
84
+ python inference-cli.py \
85
+ --model "E2-TTS" \
86
+ --ref_audio "tests/ref_audio/test_zh_1_ref_short.wav" \
87
+ --ref_text "对,这就是我,万人敬仰的太乙真人。" \
88
+ --gen_text "突然,身边一阵笑声。我看着他们,意气风发地挺直了胸膛,甩了甩那稍显肉感的双臂,轻笑道,我身上的肉,是为了掩饰我爆棚的魅力,否则,岂不吓坏了你们呢?"
89
+ ```
90
+
91
+ ### Gradio App
92
+ Currently supported features:
93
+ - Chunk inference
94
+ - Podcast Generation
95
+ - Multiple Speech-Type Generation
96
+
97
+ You can launch a Gradio app (web interface) to launch a GUI for inference (will load ckpt from Huggingface, you may set `ckpt_path` to local file in `gradio_app.py`). Currently load ASR model, F5-TTS and E2 TTS all in once, thus use more GPU memory than `inference-cli`.
98
+
99
+ ```bash
100
+ python gradio_app.py
101
+ ```
102
+
103
+ You can specify the port/host:
104
+
105
+ ```bash
106
+ python gradio_app.py --port 7860 --host 0.0.0.0
107
+ ```
108
+
109
+ Or launch a share link:
110
+
111
+ ```bash
112
+ python gradio_app.py --share
113
+ ```
114
+
115
+ ### Speech Editing
116
+
117
+ To test speech editing capabilities, use the following command.
118
+
119
+ ```bash
120
+ python speech_edit.py
121
+ ```
122
+
123
+ ## Evaluation
124
+
125
+ ### Prepare Test Datasets
126
+
127
+ 1. Seed-TTS test set: Download from [seed-tts-eval](https://github.com/BytedanceSpeech/seed-tts-eval).
128
+ 2. LibriSpeech test-clean: Download from [OpenSLR](http://www.openslr.org/12/).
129
+ 3. Unzip the downloaded datasets and place them in the data/ directory.
130
+ 4. Update the path for the test-clean data in `scripts/eval_infer_batch.py`
131
+ 5. Our filtered LibriSpeech-PC 4-10s subset is already under data/ in this repo
132
+
133
+ ### Batch Inference for Test Set
134
+
135
+ To run batch inference for evaluations, execute the following commands:
136
+
137
+ ```bash
138
+ # batch inference for evaluations
139
+ accelerate config # if not set before
140
+ bash scripts/eval_infer_batch.sh
141
+ ```
142
+
143
+ ### Download Evaluation Model Checkpoints
144
+
145
+ 1. Chinese ASR Model: [Paraformer-zh](https://huggingface.co/funasr/paraformer-zh)
146
+ 2. English ASR Model: [Faster-Whisper](https://huggingface.co/Systran/faster-whisper-large-v3)
147
+ 3. WavLM Model: Download from [Google Drive](https://drive.google.com/file/d/1-aE1NfzpRCLxA4GUxX9ITI3F9LlbtEGP/view).
148
+
149
+ ### Objective Evaluation
150
+
151
+ **Some Notes**
152
+
153
+ For faster-whisper with CUDA 11:
154
+
155
+ ```bash
156
+ pip install --force-reinstall ctranslate2==3.24.0
157
+ ```
158
+
159
+ (Recommended) To avoid possible ASR failures, such as abnormal repetitions in output:
160
+
161
+ ```bash
162
+ pip install faster-whisper==0.10.1
163
+ ```
164
+
165
+ Update the path with your batch-inferenced results, and carry out WER / SIM evaluations:
166
+ ```bash
167
+ # Evaluation for Seed-TTS test set
168
+ python scripts/eval_seedtts_testset.py
169
+
170
+ # Evaluation for LibriSpeech-PC test-clean (cross-sentence)
171
+ python scripts/eval_librispeech_test_clean.py
172
+ ```
173
+
174
+ ## Acknowledgements
175
+
176
+ - [E2-TTS](https://arxiv.org/abs/2406.18009) brilliant work, simple and effective
177
+ - [Emilia](https://arxiv.org/abs/2407.05361), [WenetSpeech4TTS](https://arxiv.org/abs/2406.05763) valuable datasets
178
+ - [lucidrains](https://github.com/lucidrains) initial CFM structure with also [bfs18](https://github.com/bfs18) for discussion
179
+ - [SD3](https://arxiv.org/abs/2403.03206) & [Hugging Face diffusers](https://github.com/huggingface/diffusers) DiT and MMDiT code structure
180
+ - [torchdiffeq](https://github.com/rtqichen/torchdiffeq) as ODE solver, [Vocos](https://huggingface.co/charactr/vocos-mel-24khz) as vocoder
181
+ - [mrfakename](https://x.com/realmrfakename) huggingface space demo ~
182
+ - [FunASR](https://github.com/modelscope/FunASR), [faster-whisper](https://github.com/SYSTRAN/faster-whisper), [UniSpeech](https://github.com/microsoft/UniSpeech) for evaluation tools
183
+ - [ctc-forced-aligner](https://github.com/MahmoudAshraf97/ctc-forced-aligner) for speech edit test
184
+
185
+ ## Citation
186
+ ```
187
+ @article{chen-etal-2024-f5tts,
188
+ title={F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching},
189
+ author={Yushen Chen and Zhikang Niu and Ziyang Ma and Keqi Deng and Chunhui Wang and Jian Zhao and Kai Yu and Xie Chen},
190
+ journal={arXiv preprint arXiv:2410.06885},
191
+ year={2024},
192
+ }
193
+ ```
194
+ ## License
195
+
196
+ Our code is released under MIT License.