Ailyth's picture
NEW-0216-050145
3c7a160
# This is Multi-reference timbre encoder
import torch
from torch import nn
from torch.nn.utils import remove_weight_norm, weight_norm
from module.attentions import MultiHeadAttention
class MRTE(nn.Module):
def __init__(
self,
content_enc_channels=192,
hidden_size=512,
out_channels=192,
kernel_size=5,
n_heads=4,
ge_layer=2,
):
super(MRTE, self).__init__()
self.cross_attention = MultiHeadAttention(hidden_size, hidden_size, n_heads)
self.c_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
self.text_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
self.c_post = nn.Conv1d(hidden_size, out_channels, 1)
def forward(self, ssl_enc, ssl_mask, text, text_mask, ge, test=None):
if ge == None:
ge = 0
attn_mask = text_mask.unsqueeze(2) * ssl_mask.unsqueeze(-1)
ssl_enc = self.c_pre(ssl_enc * ssl_mask)
text_enc = self.text_pre(text * text_mask)
if test != None:
if test == 0:
x = (
self.cross_attention(
ssl_enc * ssl_mask, text_enc * text_mask, attn_mask
)
+ ssl_enc
+ ge
)
elif test == 1:
x = ssl_enc + ge
elif test == 2:
x = (
self.cross_attention(
ssl_enc * 0 * ssl_mask, text_enc * text_mask, attn_mask
)
+ ge
)
else:
raise ValueError("test should be 0,1,2")
else:
x = (
self.cross_attention(
ssl_enc * ssl_mask, text_enc * text_mask, attn_mask
)
+ ssl_enc
+ ge
)
x = self.c_post(x * ssl_mask)
return x
class SpeakerEncoder(torch.nn.Module):
def __init__(
self,
mel_n_channels=80,
model_num_layers=2,
model_hidden_size=256,
model_embedding_size=256,
):
super(SpeakerEncoder, self).__init__()
self.lstm = nn.LSTM(
mel_n_channels, model_hidden_size, model_num_layers, batch_first=True
)
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
self.relu = nn.ReLU()
def forward(self, mels):
self.lstm.flatten_parameters()
_, (hidden, _) = self.lstm(mels.transpose(-1, -2))
embeds_raw = self.relu(self.linear(hidden[-1]))
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
class MELEncoder(nn.Module):
def __init__(
self,
in_channels,
out_channels,
hidden_channels,
kernel_size,
dilation_rate,
n_layers,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers)
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
def forward(self, x):
# print(x.shape,x_lengths.shape)
x = self.pre(x)
x = self.enc(x)
x = self.proj(x)
return x
class WN(torch.nn.Module):
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers):
super(WN, self).__init__()
assert kernel_size % 2 == 1
self.hidden_channels = hidden_channels
self.kernel_size = kernel_size
self.dilation_rate = dilation_rate
self.n_layers = n_layers
self.in_layers = torch.nn.ModuleList()
self.res_skip_layers = torch.nn.ModuleList()
for i in range(n_layers):
dilation = dilation_rate**i
padding = int((kernel_size * dilation - dilation) / 2)
in_layer = nn.Conv1d(
hidden_channels,
2 * hidden_channels,
kernel_size,
dilation=dilation,
padding=padding,
)
in_layer = weight_norm(in_layer)
self.in_layers.append(in_layer)
# last one is not necessary
if i < n_layers - 1:
res_skip_channels = 2 * hidden_channels
else:
res_skip_channels = hidden_channels
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
res_skip_layer = weight_norm(res_skip_layer, name="weight")
self.res_skip_layers.append(res_skip_layer)
def forward(self, x):
output = torch.zeros_like(x)
n_channels_tensor = torch.IntTensor([self.hidden_channels])
for i in range(self.n_layers):
x_in = self.in_layers[i](x)
acts = fused_add_tanh_sigmoid_multiply(x_in, n_channels_tensor)
res_skip_acts = self.res_skip_layers[i](acts)
if i < self.n_layers - 1:
res_acts = res_skip_acts[:, : self.hidden_channels, :]
x = x + res_acts
output = output + res_skip_acts[:, self.hidden_channels :, :]
else:
output = output + res_skip_acts
return output
def remove_weight_norm(self):
for l in self.in_layers:
remove_weight_norm(l)
for l in self.res_skip_layers:
remove_weight_norm(l)
@torch.jit.script
def fused_add_tanh_sigmoid_multiply(input, n_channels):
n_channels_int = n_channels[0]
t_act = torch.tanh(input[:, :n_channels_int, :])
s_act = torch.sigmoid(input[:, n_channels_int:, :])
acts = t_act * s_act
return acts
if __name__ == "__main__":
content_enc = torch.randn(3, 192, 100)
content_mask = torch.ones(3, 1, 100)
ref_mel = torch.randn(3, 128, 30)
ref_mask = torch.ones(3, 1, 30)
model = MRTE()
out = model(content_enc, content_mask, ref_mel, ref_mask)
print(out.shape)