File size: 12,149 Bytes
69cf514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/dataset.py
# reference: https://github.com/lifeiteng/vall-e
import pdb
import sys

# sys.path.append("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert")
import traceback, os
from typing import Dict
from typing import List

import numpy as np
import pandas as pd
import torch, json
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from transformers import AutoTokenizer

version = os.environ.get('version',None)

from text import cleaned_text_to_sequence

# from config import exp_dir


def batch_sequences(sequences: List[np.array], axis: int = 0, pad_value: int = 0):
    seq = sequences[0]
    ndim = seq.ndim
    if axis < 0:
        axis += ndim
    dtype = seq.dtype
    pad_value = dtype.type(pad_value)
    seq_lengths = [seq.shape[axis] for seq in sequences]
    max_length = np.max(seq_lengths)

    padded_sequences = []
    for seq, length in zip(sequences, seq_lengths):
        padding = (
            [(0, 0)] * axis + [(0, max_length - length)] + [(0, 0)] * (ndim - axis - 1)
        )
        padded_seq = np.pad(seq, padding, mode="constant", constant_values=pad_value)
        padded_sequences.append(padded_seq)
    batch = np.stack(padded_sequences)
    return batch


class Text2SemanticDataset(Dataset):
    """dataset class for text tokens to semantic model training."""

    def __init__(
        self,
        phoneme_path: str,
        semantic_path: str,
        max_sample: int = None,
        max_sec: int = 100,
        pad_val: int = 1024,
        # min value of phoneme/sec
        min_ps_ratio: int = 3,
        # max value of phoneme/sec
        max_ps_ratio: int = 25,
    ) -> None:
        super().__init__()

        self.semantic_data = pd.read_csv(
            semantic_path, delimiter="\t", encoding="utf-8"
        )
        # get dict
        self.path2 = phoneme_path  # "%s/2-name2text.txt"%exp_dir#phoneme_path
        self.path3 = "%s/3-bert" % (
            os.path.dirname(phoneme_path)
        )  # "%s/3-bert"%exp_dir#bert_dir
        self.path6 = semantic_path  # "%s/6-name2semantic.tsv"%exp_dir#semantic_path
        assert os.path.exists(self.path2)
        assert os.path.exists(self.path6)
        self.phoneme_data = {}
        with open(self.path2, "r", encoding="utf8") as f:
            lines = f.read().strip("\n").split("\n")

        for line in lines:
            tmp = line.split("\t")
            if len(tmp) != 4:
                continue
            self.phoneme_data[tmp[0]] = [tmp[1], tmp[2], tmp[3]]

        # self.phoneme_data = np.load(phoneme_path, allow_pickle=True).item()
        # pad for semantic tokens
        self.PAD: int = pad_val
        # self.hz = 25
        # with open("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert/configs/s2.json", "r") as f:data = f.read()
        # data=json.loads(data)["model"]["semantic_frame_rate"]#50hz
        # self.hz=int(data[:-2])#
        self.hz = int(os.environ.get("hz", "25hz")[:-2])

        # max seconds of semantic token
        self.max_sec = max_sec
        self.min_ps_ratio = min_ps_ratio
        self.max_ps_ratio = max_ps_ratio

        if max_sample is not None:
            self.semantic_data = self.semantic_data[:max_sample]

        # {idx: (semantic, phoneme)}
        # semantic list, phoneme list
        self.semantic_phoneme = []
        self.item_names = []

        self.inited = False

        if not self.inited:
            # 调用初始化函数
            self.init_batch()
            self.inited = True
            del self.semantic_data
            del self.phoneme_data
        # self.tokenizer = AutoTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext-large")
        # self.tokenizer = AutoTokenizer.from_pretrained("/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large")

    def init_batch(self):
        semantic_data_len = len(self.semantic_data)
        phoneme_data_len = len(self.phoneme_data.keys())
        print("semantic_data_len:", semantic_data_len)
        print("phoneme_data_len:", phoneme_data_len)
        print(self.semantic_data)
        idx = 0
        num_not_in = 0
        num_deleted_bigger = 0
        num_deleted_ps = 0
        for i in range(semantic_data_len):
            # 先依次遍历
            # get str
            item_name = self.semantic_data.iloc[i,0]
            # print(self.phoneme_data)
            try:
                phoneme, word2ph, text = self.phoneme_data[item_name]
            except Exception:
                traceback.print_exc()
                # print(f"{item_name} not in self.phoneme_data !")
                num_not_in += 1
                continue

            semantic_str = self.semantic_data.iloc[i,1]
            # get token list
            semantic_ids = [int(idx) for idx in semantic_str.split(" ")]
            # (T), 是否需要变成 (1, T) -> 不需要,因为需要求 len
            # 过滤掉太长的样本
            if (
                len(semantic_ids) > self.max_sec * self.hz
            ):  #########1###根据token个数推测总时长过滤时长60s(config里)#40*25=1k
                num_deleted_bigger += 1
                continue
            # (T, ), 这个速度不会很慢,所以可以在一开始就处理,无需在 __getitem__ 里面单个处理####
            phoneme = phoneme.split(" ")

            try:
                phoneme_ids = cleaned_text_to_sequence(phoneme, version)
            except:
                traceback.print_exc()
                # print(f"{item_name} not in self.phoneme_data !")
                num_not_in += 1
                continue
            # if len(phoneme_ids) >400:###########2:改为恒定限制为semantic/2.5就行
            if (
                len(phoneme_ids) > self.max_sec * self.hz / 2.5
            ):  ###########2:改为恒定限制为semantic/2.5就行
                num_deleted_ps += 1
                continue
            # if len(semantic_ids) > 1000:###########3
            #     num_deleted_bigger += 1
            #     continue

            ps_ratio = len(phoneme_ids) / (len(semantic_ids) / self.hz)

            if (
                ps_ratio > self.max_ps_ratio or ps_ratio < self.min_ps_ratio
            ):  ##########4#3~25#每秒多少个phone
                num_deleted_ps += 1
                # print(item_name)
                continue

            self.semantic_phoneme.append((semantic_ids, phoneme_ids))
            idx += 1
            self.item_names.append(item_name)

        min_num = 100  # 20直接不补#30补了也不存ckpt
        leng = len(self.semantic_phoneme)
        if leng < min_num:
            tmp1 = self.semantic_phoneme
            tmp2 = self.item_names
            self.semantic_phoneme = []
            self.item_names = []
            for _ in range(max(2, int(min_num / leng))):
                self.semantic_phoneme += tmp1
                self.item_names += tmp2
        if num_not_in > 0:
            print(f"there are {num_not_in} semantic datas not in phoneme datas")
        if num_deleted_bigger > 0:
            print(
                f"deleted {num_deleted_bigger} audios who's duration are bigger than {self.max_sec} seconds"
            )
        if num_deleted_ps > 0:
            # 4702 for LibriTTS, LirbriTTS 是标注数据, 是否需要筛?=> 需要,有值为 100 的极端值
            print(
                f"deleted {num_deleted_ps} audios who's phoneme/sec are bigger than {self.max_ps_ratio} or smaller than {self.min_ps_ratio}"
            )
        """
        there are 31 semantic datas not in phoneme datas
        deleted 34 audios who's duration are bigger than 54 seconds
        deleted 3190 audios who's phoneme/sec are bigger than 25 or smaller than 3
        dataset.__len__(): 366463

        """
        # 345410 for LibriTTS
        print("dataset.__len__():", self.__len__())

    def __get_item_names__(self) -> List[str]:
        return self.item_names

    def __len__(self) -> int:
        return len(self.semantic_phoneme)

    def __getitem__(self, idx: int) -> Dict:
        semantic_ids, phoneme_ids = self.semantic_phoneme[idx]
        item_name = self.item_names[idx]
        phoneme_ids_len = len(phoneme_ids)
        # semantic tokens target
        semantic_ids_len = len(semantic_ids)

        flag = 0
        path_bert = "%s/%s.pt" % (self.path3, item_name)
        if os.path.exists(path_bert) == True:
            bert_feature = torch.load(path_bert, map_location="cpu")
        else:
            flag = 1
        if flag == 1:
            # bert_feature=torch.zeros_like(phoneme_ids,dtype=torch.float32)
            bert_feature = None
        else:
            assert bert_feature.shape[-1] == len(phoneme_ids)
        return {
            "idx": idx,
            "phoneme_ids": phoneme_ids,
            "phoneme_ids_len": phoneme_ids_len,
            "semantic_ids": semantic_ids,
            "semantic_ids_len": semantic_ids_len,
            "bert_feature": bert_feature,
        }

    def get_sample_length(self, idx: int):
        semantic_ids = self.semantic_phoneme[idx][0]
        sec = 1.0 * len(semantic_ids) / self.hz
        return sec

    def collate(self, examples: List[Dict]) -> Dict:
        sample_index: List[int] = []
        phoneme_ids: List[torch.Tensor] = []
        phoneme_ids_lens: List[int] = []
        semantic_ids: List[torch.Tensor] = []
        semantic_ids_lens: List[int] = []
        # return

        for item in examples:
            sample_index.append(item["idx"])
            phoneme_ids.append(np.array(item["phoneme_ids"], dtype=np.int64))
            semantic_ids.append(np.array(item["semantic_ids"], dtype=np.int64))
            phoneme_ids_lens.append(item["phoneme_ids_len"])
            semantic_ids_lens.append(item["semantic_ids_len"])

        # pad 0
        phoneme_ids = batch_sequences(phoneme_ids)
        semantic_ids = batch_sequences(semantic_ids, pad_value=self.PAD)

        # # convert each batch to torch.tensor
        phoneme_ids = torch.tensor(phoneme_ids)
        semantic_ids = torch.tensor(semantic_ids)
        phoneme_ids_lens = torch.tensor(phoneme_ids_lens)
        semantic_ids_lens = torch.tensor(semantic_ids_lens)
        bert_padded = torch.FloatTensor(len(examples), 1024, max(phoneme_ids_lens))
        bert_padded.zero_()

        for idx, item in enumerate(examples):
            bert = item["bert_feature"]
            if bert != None:
                bert_padded[idx, :, : bert.shape[-1]] = bert

        return {
            # List[int]
            "ids": sample_index,
            # torch.Tensor (B, max_phoneme_length)
            "phoneme_ids": phoneme_ids,
            # torch.Tensor (B)
            "phoneme_ids_len": phoneme_ids_lens,
            # torch.Tensor (B, max_semantic_ids_length)
            "semantic_ids": semantic_ids,
            # torch.Tensor (B)
            "semantic_ids_len": semantic_ids_lens,
            # torch.Tensor (B, 1024, max_phoneme_length)
            "bert_feature": bert_padded,
        }


if __name__ == "__main__":
    root_dir = "/data/docker/liujing04/gpt-vits/prepare/dump_mix/"
    dataset = Text2SemanticDataset(
        phoneme_path=root_dir + "phoneme_train.npy",
        semantic_path=root_dir + "semantic_train.tsv",
    )

    batch_size = 12
    dataloader = DataLoader(
        dataset, batch_size=batch_size, collate_fn=dataset.collate, shuffle=False
    )
    for i, batch in enumerate(dataloader):
        if i % 1000 == 0:
            print(i)
        # if i == 0:
        #     print('batch["ids"]:', batch["ids"])
        # print('batch["phoneme_ids"]:', batch["phoneme_ids"],
        #       batch["phoneme_ids"].shape)
        # print('batch["phoneme_ids_len"]:', batch["phoneme_ids_len"],
        #       batch["phoneme_ids_len"].shape)
        # print('batch["semantic_ids"]:', batch["semantic_ids"],
        #       batch["semantic_ids"].shape)
        # print('batch["semantic_ids_len"]:', batch["semantic_ids_len"],
        #       batch["semantic_ids_len"].shape)