Spaces:
Running
Running
File size: 17,602 Bytes
ad6643a 584cae7 297fb27 ad6643a 81249e7 ad6643a 81249e7 ad6643a 4d24fa6 ad6643a 4d24fa6 ad6643a 4d24fa6 ad6643a 4d24fa6 ad6643a a3ab3fa 81249e7 ad6643a c0bdc2a ad6643a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
"""
受 GPT-SoVITS 启发
"""
import os
import os.path as osp
import re
import logging
from time import time as ttime
from warnings import warn
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
logging.getLogger("markdown_it").setLevel(logging.ERROR)
logging.getLogger("urllib3").setLevel(logging.ERROR)
logging.getLogger("httpcore").setLevel(logging.ERROR)
logging.getLogger("httpx").setLevel(logging.ERROR)
logging.getLogger("asyncio").setLevel(logging.ERROR)
logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
import torch
from torch import nn
import torch.nn.functional as F
import librosa
import numpy as np
import LangSegment
import gradio as gr
from transformers import AutoModelForMaskedLM, AutoTokenizer
from feature_extractor import cnhubert
from module.models import SynthesizerTrn
from module.mel_processing import spectrogram_torch
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
from my_utils import load_audio
from tools.i18n.i18n import I18nAuto
def get_pretrain_model_path(env_name, log_file, def_path):
""" 获取预训练模型路径
env_name: 从环境变量获取,第一优先级
log_file: 记录在文本文件内,第二优先级
def_path: 传参,第三优先级
"""
if osp.isfile(log_file):
def_path = open(log_file, 'r', encoding="utf-8").read()
pretrain_path = os.environ.get(env_name, def_path)
return pretrain_path
# device = "cuda" if torch.cuda.is_available() else "cpu"
device = 'cpu'
gpt_path = get_pretrain_model_path('gpt_path', "./gweight.txt",
"GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
sovits_path = get_pretrain_model_path('sovits_path', "./sweight.txt",
"GPT_SoVITS/pretrained_models/s2G488k.pth")
cnhubert_base_path = get_pretrain_model_path("cnhubert_base_path", '', "GPT_SoVITS/pretrained_models/chinese-hubert-base")
bert_path = get_pretrain_model_path("bert_path", '', "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large")
vc_webui_port = int(os.environ.get("vc_webui_port", 9888)) # specify gradio port
print(f'port: {vc_webui_port}')
is_share = eval(os.environ.get("is_share", "False"))
if "_CUDA_VISIBLE_DEVICES" in os.environ:
os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
# is_half = eval(os.environ.get("is_half", "True")) and not torch.backends.mps.is_available()
is_half = False
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
cnhubert.cnhubert_base_path = cnhubert_base_path
i18n = I18nAuto()
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
if is_half:
bert_model = bert_model.half().to(device)
else:
bert_model = bert_model.to(device)
def get_bert_feature(text, word2ph):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device)
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
return phone_level_feature.T
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
ssl_model = cnhubert.get_model()
if is_half:
ssl_model = ssl_model.half().to(device)
else:
ssl_model = ssl_model.to(device)
def change_sovits_weights(sovits_path):
global vq_model, hps
dict_s2 = torch.load(sovits_path, map_location="cpu")
hps = dict_s2["config"]
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate = "25hz"
if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
hps.model.version = "v1"
else:
hps.model.version = "v2"
print("sovits版本:",hps.model.version)
model_params_dict = vars(hps.model)
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**model_params_dict
)
if ("pretrained" not in sovits_path):
del vq_model.enc_q
if is_half == True:
vq_model = vq_model.half().to(device)
else:
vq_model = vq_model.to(device)
vq_model.eval()
vq_model.load_state_dict(dict_s2["weight"], strict=False)
change_sovits_weights(sovits_path)
def change_gpt_weights(gpt_path):
global hz, max_sec, t2s_model, config
hz = 50
dict_s1 = torch.load(gpt_path, map_location="cpu")
config = dict_s1["config"]
max_sec = config["data"]["max_sec"]
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if is_half == True:
t2s_model = t2s_model.half()
t2s_model = t2s_model.to(device)
t2s_model.eval()
total = sum([param.nelement() for param in t2s_model.parameters()])
logger.info("Number of parameter: %.2fM" % (total / 1e6))
change_gpt_weights(gpt_path)
def get_spepc(hps, filename):
audio = load_audio(filename, int(hps.data.sampling_rate))
audio = torch.FloatTensor(audio)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(
audio_norm,
hps.data.filter_length,
hps.data.sampling_rate,
hps.data.hop_length,
hps.data.win_length,
center=False,
)
return spec
dict_language = {
i18n("中文"): "all_zh",#全部按中文识别
i18n("英文"): "en",#全部按英文识别#######不变
i18n("日文"): "all_ja",#全部按日文识别
i18n("中英混合"): "zh",#按中英混合识别####不变
i18n("日英混合"): "ja",#按日英混合识别####不变
i18n("多语种混合"): "auto",#多语种启动切分识别语种
}
# def clean_text_inf(text, language):
# phones, word2ph, norm_text = clean_text(text, language)
# phones = cleaned_text_to_sequence(phones)
# return phones, word2ph, norm_text
def clean_text_inf(text, language):
"""
text: 字符串
language: 所属语言
return:
phones: 音素 id 序列
word2ph: 每个字转音素后,对应的个数,对于中文,就是声韵母,因此是全是 2 的 list
norm_text: 归一化后文本
"""
formattext = ""
language = language.replace("all_","")
for tmp in LangSegment.getTexts(text):
if language == "ja":
if tmp["lang"] == language or tmp["lang"] == "zh":
formattext += tmp["text"] + " "
continue
if tmp["lang"] == language:
formattext += tmp["text"] + " "
while " " in formattext:
formattext = formattext.replace(" ", " ")
phones, word2ph, norm_text = clean_text(formattext, language)
# print(f'音素: {phones}')
phones = cleaned_text_to_sequence(phones) # 统一了中、英、日等
# print(f'音素 id: {phones}')
return phones, word2ph, norm_text
dtype=torch.float16 if is_half == True else torch.float32
def get_bert_inf(phones, word2ph, norm_text, language):
language=language.replace("all_","")
if language == "zh":
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
else:
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
return bert
splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
def split(todo_text):
todo_text = todo_text.replace("……", "。").replace("——", ",")
if todo_text[-1] not in splits:
todo_text += "。"
i_split_head = i_split_tail = 0
len_text = len(todo_text)
todo_texts = []
while 1:
if i_split_head >= len_text:
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
if todo_text[i_split_head] in splits:
i_split_head += 1
todo_texts.append(todo_text[i_split_tail:i_split_head])
i_split_tail = i_split_head
else:
i_split_head += 1
return todo_texts
def custom_sort_key(s):
# 使用正则表达式提取字符串中的数字部分和非数字部分
parts = re.split('(\d+)', s)
# 将数字部分转换为整数,非数字部分保持不变
parts = [int(part) if part.isdigit() else part for part in parts]
return parts
def change_choices():
SoVITS_names, GPT_names = get_weights_names()
return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth"
pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
SoVITS_weight_root = "SoVITS_weights_v2"
GPT_weight_root = "GPT_weights_v2"
os.makedirs(SoVITS_weight_root, exist_ok=True)
os.makedirs(GPT_weight_root, exist_ok=True)
def get_weights_names():
SoVITS_names = [pretrained_sovits_name]
for name in os.listdir(SoVITS_weight_root):
if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name))
GPT_names = [pretrained_gpt_name]
for name in os.listdir(GPT_weight_root):
if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name))
return SoVITS_names, GPT_names
SoVITS_names, GPT_names = get_weights_names()
@torch.no_grad()
def get_code_from_ssl(ssl):
ssl = vq_model.ssl_proj(ssl)
quantized, codes, commit_loss, quantized_list = vq_model.quantizer(ssl)
# print(codes.shape, codes.dtype) # [n_q, B, T]
return codes.transpose(0, 1) # [B, n_q, T]
@torch.no_grad()
def get_code_from_wav(wav_path):
wav16k, sr = librosa.load(wav_path, sr=16000)
if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
# raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
warn(i18n("参考音频在3~10秒范围外,请更换!"))
wav16k = torch.from_numpy(wav16k)
if is_half == True:
wav16k = wav16k.half().to(device)
else:
wav16k = wav16k.to(device)
ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
"last_hidden_state"
].transpose(
1, 2
) # .float()
codes = get_code_from_ssl(ssl_content) # [B, n_q, T]
prompt_semantic = codes[0, 0]
return prompt_semantic
def splite_en_inf(sentence, language):
pattern = re.compile(r'[a-zA-Z ]+')
textlist = []
langlist = []
pos = 0
for match in pattern.finditer(sentence):
start, end = match.span()
if start > pos:
textlist.append(sentence[pos:start])
langlist.append(language)
textlist.append(sentence[start:end])
langlist.append("en")
pos = end
if pos < len(sentence):
textlist.append(sentence[pos:])
langlist.append(language)
# Merge punctuation into previous word
for i in range(len(textlist)-1, 0, -1):
if re.match(r'^[\W_]+$', textlist[i]):
textlist[i-1] += textlist[i]
del textlist[i]
del langlist[i]
# Merge consecutive words with the same language tag
i = 0
while i < len(langlist) - 1:
if langlist[i] == langlist[i+1]:
textlist[i] += textlist[i+1]
del textlist[i+1]
del langlist[i+1]
else:
i += 1
return textlist, langlist
def nonen_clean_text_inf(text, language):
if(language!="auto"):
textlist, langlist = splite_en_inf(text, language)
else:
textlist=[]
langlist=[]
for tmp in LangSegment.getTexts(text):
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
phones_list = []
word2ph_list = []
norm_text_list = []
for i in range(len(textlist)):
lang = langlist[i]
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
phones_list.append(phones)
if lang == "zh":
word2ph_list.append(word2ph)
norm_text_list.append(norm_text)
print(word2ph_list)
phones = sum(phones_list, [])
word2ph = sum(word2ph_list, [])
norm_text = ' '.join(norm_text_list)
return phones, word2ph, norm_text
def get_cleaned_text_final(text,language):
if language in {"en","all_zh","all_ja"}:
phones, word2ph, norm_text = clean_text_inf(text, language)
elif language in {"zh", "ja","auto"}:
phones, word2ph, norm_text = nonen_clean_text_inf(text, language)
return phones, word2ph, norm_text
@torch.no_grad()
def vc_main(wav_path, text, language, prompt_wav, noise_scale=0.5):
""" Voice Conversion
wav_path: 待变声的源音频
text: 对应文本
language: 对应语言
prompt_wav: 目标人声
"""
language = dict_language[language]
phones, word2ph, norm_text = get_cleaned_text_final(text, language)
spec = get_spepc(hps, prompt_wav)
codes = get_code_from_wav(wav_path)[None, None] # 必须是 3D, [n_q, B, T]
if hps.model.version == "v1":
ge = vq_model.ref_enc(spec) # [B, D, T/1]
else:
ge = vq_model.ref_enc(spec[:,:704])
quantized = vq_model.quantizer.decode(codes) # [B, D, T]
if hps.model.semantic_frame_rate == "25hz":
quantized = F.interpolate(
quantized, size=int(quantized.shape[-1] * 2), mode="nearest"
)
_, m_p, logs_p, y_mask = vq_model.enc_p(
quantized, torch.LongTensor([quantized.shape[-1]]),
torch.LongTensor(phones)[None], torch.LongTensor([len(phones)]), ge
)
z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
z = vq_model.flow(z_p, y_mask, g=ge, reverse=True)
o = vq_model.dec((z * y_mask)[:, :, :], g=ge) # [B, D=1, T], torch.float32 (-1, 1)
audio = o.detach().cpu().numpy()[0, 0]
max_audio = np.abs(audio).max() # 简单防止16bit爆音
if max_audio > 1:
audio /= max_audio
yield hps.data.sampling_rate, (audio * 32768).astype(np.int16)
with gr.Blocks(title="GPT-SoVITS-VC WebUI") as app:
gr.Markdown(
value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
)
with gr.Group():
gr.Markdown(value=i18n("模型切换"))
with gr.Row():
GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True)
SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True)
refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], [])
GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
gr.Markdown(value=i18n("* 请上传目标音色音频,要求说话人单一,声音干净"))
with gr.Row():
inp_ref = gr.Audio(label=i18n("请上传 3~10 秒内参考音频,超过会报警!"), type="filepath")
gr.Markdown(value=i18n("* 请填写需要变声/转换的源音频,以及对应文本"))
with gr.Row():
src_audio = gr.Audio(label=i18n('源音频'), type='filepath')
text = gr.Textbox(label=i18n("源音频对应文本"), value="")
text_language = gr.Dropdown(
label=i18n("文本语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
)
inference_button = gr.Button(i18n("合成语音"), variant="primary")
output = gr.Audio(label=i18n("变声后"))
inference_button.click(
vc_main,
[src_audio, text, text_language, inp_ref],
[output],
)
app.queue().launch(
share=False,
show_error=True,
) |