File size: 6,318 Bytes
1503e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
from typing import Optional
from typing import Tuple
import torch
from torch import Tensor
from torch.nn import Linear
from torch.nn import Module
from torch.nn.init import constant_
from torch.nn.init import xavier_normal_
from torch.nn.init import xavier_uniform_
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
from torch.nn.parameter import Parameter

from torch.nn import functional as F
from AR.modules.patched_mha_with_cache_onnx import multi_head_attention_forward_patched


class MultiheadAttention(Module):
    __constants__ = ["batch_first"]
    bias_k: Optional[torch.Tensor]
    bias_v: Optional[torch.Tensor]

    def __init__(
        self,
        embed_dim,
        num_heads,
        dropout=0.0,
        bias=True,
        add_bias_kv=False,
        add_zero_attn=False,
        kdim=None,
        vdim=None,
        batch_first=False,
        linear1_cls=Linear,
        linear2_cls=Linear,
        device=None,
        dtype=None,
    ) -> None:
        factory_kwargs = {"device": device, "dtype": dtype}
        super(MultiheadAttention, self).__init__()
        self.embed_dim = embed_dim
        self.kdim = kdim if kdim is not None else embed_dim
        self.vdim = vdim if vdim is not None else embed_dim
        self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim

        self.num_heads = num_heads
        self.dropout = dropout
        self.batch_first = batch_first
        self.head_dim = embed_dim // num_heads
        assert (
            self.head_dim * num_heads == self.embed_dim
        ), "embed_dim must be divisible by num_heads"

        if add_bias_kv:
            self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
            self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
        else:
            self.bias_k = self.bias_v = None

        if linear1_cls == Linear:
            if not self._qkv_same_embed_dim:
                self.q_proj_weight = Parameter(
                    torch.empty((embed_dim, embed_dim), **factory_kwargs)
                )
                self.k_proj_weight = Parameter(
                    torch.empty((embed_dim, self.kdim), **factory_kwargs)
                )
                self.v_proj_weight = Parameter(
                    torch.empty((embed_dim, self.vdim), **factory_kwargs)
                )
                self.register_parameter("in_proj_weight", None)
            else:
                self.in_proj_weight = Parameter(
                    torch.empty((3 * embed_dim, embed_dim), **factory_kwargs)
                )
                self.register_parameter("q_proj_weight", None)
                self.register_parameter("k_proj_weight", None)
                self.register_parameter("v_proj_weight", None)

            if bias:
                self.in_proj_bias = Parameter(
                    torch.empty(3 * embed_dim, **factory_kwargs)
                )
            else:
                self.register_parameter("in_proj_bias", None)
            self.out_proj = NonDynamicallyQuantizableLinear(
                embed_dim, embed_dim, bias=bias, **factory_kwargs
            )

            self._reset_parameters()
        else:
            if not self._qkv_same_embed_dim:
                raise NotImplementedError
            else:
                self.in_proj_linear = linear1_cls(
                    embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs
                )
                self.in_proj_weight = self.in_proj_linear.weight

                self.register_parameter("q_proj_weight", None)
                self.register_parameter("k_proj_weight", None)
                self.register_parameter("v_proj_weight", None)

                if bias:
                    self.in_proj_bias = self.in_proj_linear.bias
                else:
                    self.register_parameter("in_proj_bias", None)

            self.out_proj = linear2_cls(
                embed_dim, embed_dim, bias=bias, **factory_kwargs
            )

            if self.bias_k is not None:
                xavier_normal_(self.bias_k)
            if self.bias_v is not None:
                xavier_normal_(self.bias_v)

        self.add_zero_attn = add_zero_attn

    def _reset_parameters(self):
        if self._qkv_same_embed_dim:
            xavier_uniform_(self.in_proj_weight)
        else:
            xavier_uniform_(self.q_proj_weight)
            xavier_uniform_(self.k_proj_weight)
            xavier_uniform_(self.v_proj_weight)

        if self.in_proj_bias is not None:
            constant_(self.in_proj_bias, 0.0)
            constant_(self.out_proj.bias, 0.0)

        if self.bias_k is not None:
            xavier_normal_(self.bias_k)
        if self.bias_v is not None:
            xavier_normal_(self.bias_v)

    def __setstate__(self, state):
        # Support loading old MultiheadAttention checkpoints generated by v1.1.0
        if "_qkv_same_embed_dim" not in state:
            state["_qkv_same_embed_dim"] = True

        super(MultiheadAttention, self).__setstate__(state)

    def forward(
        self,
        query: Tensor,
        key: Tensor,
        value: Tensor,
        key_padding_mask: Optional[Tensor] = None,
        need_weights: bool = True,
        attn_mask: Optional[Tensor] = None,
        average_attn_weights: bool = True,
        cache=None,
    ) -> Tuple[Tensor, Optional[Tensor]]:
        any_nested = query.is_nested or key.is_nested or value.is_nested
        query = key = value = query.transpose(1, 0)
        attn_output = multi_head_attention_forward_patched(
            query,
            key,
            value,
            self.embed_dim,
            self.num_heads,
            self.in_proj_weight,
            self.in_proj_bias,
            self.bias_k,
            self.bias_v,
            self.add_zero_attn,
            self.dropout,
            self.out_proj.weight,
            self.out_proj.bias,
            training=self.training,
            key_padding_mask=key_padding_mask,
            need_weights=need_weights,
            attn_mask=attn_mask,
            average_attn_weights=average_attn_weights,
            cache=cache,
        )
        return attn_output.transpose(1, 0)