Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,668 Bytes
1503e4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"source": [
"# Credits for bubarino giving me the huggingface import code (感谢 bubarino 给了我 huggingface 导入代码)"
],
"metadata": {
"id": "himHYZmra7ix"
}
},
{
"cell_type": "code",
"metadata": {
"id": "e9b7iFV3dm1f"
},
"source": [
"!git clone https://github.com/RVC-Boss/GPT-SoVITS.git\n",
"%cd GPT-SoVITS\n",
"!apt-get update && apt-get install -y --no-install-recommends tzdata ffmpeg libsox-dev parallel aria2 git git-lfs && git lfs install\n",
"!pip install -r requirements.txt"
],
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# @title Download pretrained models 下载预训练模型\n",
"!mkdir -p /content/GPT-SoVITS/GPT_SoVITS/pretrained_models\n",
"!mkdir -p /content/GPT-SoVITS/tools/damo_asr/models\n",
"!mkdir -p /content/GPT-SoVITS/tools/uvr5\n",
"%cd /content/GPT-SoVITS/GPT_SoVITS/pretrained_models\n",
"!git clone https://huggingface.co/lj1995/GPT-SoVITS\n",
"%cd /content/GPT-SoVITS/tools/damo_asr/models\n",
"!git clone https://www.modelscope.cn/damo/speech_paraformer-large_asr_nat-zh-cn-16k-common-vocab8404-pytorch.git\n",
"!git clone https://www.modelscope.cn/damo/speech_fsmn_vad_zh-cn-16k-common-pytorch.git\n",
"!git clone https://www.modelscope.cn/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch.git\n",
"# @title UVR5 pretrains 安装uvr5模型\n",
"%cd /content/GPT-SoVITS/tools/uvr5\n",
"!git clone https://huggingface.co/Delik/uvr5_weights\n",
"!git config core.sparseCheckout true\n",
"!mv /content/GPT-SoVITS/GPT_SoVITS/pretrained_models/GPT-SoVITS/* /content/GPT-SoVITS/GPT_SoVITS/pretrained_models/"
],
"metadata": {
"id": "0NgxXg5sjv7z",
"cellView": "form"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"#@title Create folder models 创建文件夹模型\n",
"import os\n",
"base_directory = \"/content/GPT-SoVITS\"\n",
"folder_names = [\"SoVITS_weights\", \"GPT_weights\"]\n",
"\n",
"for folder_name in folder_names:\n",
" if os.path.exists(os.path.join(base_directory, folder_name)):\n",
" print(f\"The folder '{folder_name}' already exists. (文件夹'{folder_name}'已经存在。)\")\n",
" else:\n",
" os.makedirs(os.path.join(base_directory, folder_name))\n",
" print(f\"The folder '{folder_name}' was created successfully! (文件夹'{folder_name}'已成功创建!)\")\n",
"\n",
"print(\"All folders have been created. (所有文件夹均已创建。)\")"
],
"metadata": {
"cellView": "form",
"id": "cPDEH-9czOJF"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"import requests\n",
"import zipfile\n",
"import shutil\n",
"import os\n",
"\n",
"#@title Import model 导入模型 (HuggingFace)\n",
"hf_link = 'https://huggingface.co/modelloosrvcc/Nagisa_Shingetsu_GPT-SoVITS/resolve/main/Nagisa.zip' #@param {type: \"string\"}\n",
"\n",
"output_path = '/content/'\n",
"\n",
"response = requests.get(hf_link)\n",
"with open(output_path + 'file.zip', 'wb') as file:\n",
" file.write(response.content)\n",
"\n",
"with zipfile.ZipFile(output_path + 'file.zip', 'r') as zip_ref:\n",
" zip_ref.extractall(output_path)\n",
"\n",
"os.remove(output_path + \"file.zip\")\n",
"\n",
"source_directory = output_path\n",
"SoVITS_destination_directory = '/content/GPT-SoVITS/SoVITS_weights'\n",
"GPT_destination_directory = '/content/GPT-SoVITS/GPT_weights'\n",
"\n",
"for filename in os.listdir(source_directory):\n",
" if filename.endswith(\".pth\"):\n",
" source_path = os.path.join(source_directory, filename)\n",
" destination_path = os.path.join(SoVITS_destination_directory, filename)\n",
" shutil.move(source_path, destination_path)\n",
"\n",
"for filename in os.listdir(source_directory):\n",
" if filename.endswith(\".ckpt\"):\n",
" source_path = os.path.join(source_directory, filename)\n",
" destination_path = os.path.join(GPT_destination_directory, filename)\n",
" shutil.move(source_path, destination_path)\n",
"\n",
"print(f'Model downloaded. (模型已下载。)')"
],
"metadata": {
"cellView": "form",
"id": "vbZY-LnM0tzq"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# @title launch WebUI 启动WebUI\n",
"!/usr/local/bin/pip install ipykernel\n",
"!sed -i '10s/False/True/' /content/GPT-SoVITS/config.py\n",
"%cd /content/GPT-SoVITS/\n",
"!/usr/local/bin/python webui.py"
],
"metadata": {
"id": "4oRGUzkrk8C7",
"cellView": "form"
},
"execution_count": null,
"outputs": []
}
]
} |