Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,824 Bytes
1503e4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 |
"""
# api.py usage
` python api.py -dr "123.wav" -dt "一二三。" -dl "zh" `
## 执行参数:
`-s` - `SoVITS模型路径, 可在 config.py 中指定`
`-g` - `GPT模型路径, 可在 config.py 中指定`
调用请求缺少参考音频时使用
`-dr` - `默认参考音频路径`
`-dt` - `默认参考音频文本`
`-dl` - `默认参考音频语种, "中文","英文","日文","韩文","粤语,"zh","en","ja","ko","yue"`
`-d` - `推理设备, "cuda","cpu"`
`-a` - `绑定地址, 默认"127.0.0.1"`
`-p` - `绑定端口, 默认9880, 可在 config.py 中指定`
`-fp` - `覆盖 config.py 使用全精度`
`-hp` - `覆盖 config.py 使用半精度`
`-sm` - `流式返回模式, 默认不启用, "close","c", "normal","n", "keepalive","k"`
·-mt` - `返回的音频编码格式, 流式默认ogg, 非流式默认wav, "wav", "ogg", "aac"`
·-cp` - `文本切分符号设定, 默认为空, 以",.,。"字符串的方式传入`
`-hb` - `cnhubert路径`
`-b` - `bert路径`
## 调用:
### 推理
endpoint: `/`
使用执行参数指定的参考音频:
GET:
`http://127.0.0.1:9880?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh`
POST:
```json
{
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。",
"text_language": "zh"
}
```
使用执行参数指定的参考音频并设定分割符号:
GET:
`http://127.0.0.1:9880?text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh&cut_punc=,。`
POST:
```json
{
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。",
"text_language": "zh",
"cut_punc": ",。",
}
```
手动指定当次推理所使用的参考音频:
GET:
`http://127.0.0.1:9880?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh&text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh`
POST:
```json
{
"refer_wav_path": "123.wav",
"prompt_text": "一二三。",
"prompt_language": "zh",
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。",
"text_language": "zh"
}
```
RESP:
成功: 直接返回 wav 音频流, http code 200
失败: 返回包含错误信息的 json, http code 400
手动指定当次推理所使用的参考音频,并提供参数:
GET:
`http://127.0.0.1:9880?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh&text=先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。&text_language=zh&top_k=20&top_p=0.6&temperature=0.6&speed=1`
POST:
```json
{
"refer_wav_path": "123.wav",
"prompt_text": "一二三。",
"prompt_language": "zh",
"text": "先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。",
"text_language": "zh",
"top_k": 20,
"top_p": 0.6,
"temperature": 0.6,
"speed": 1
}
```
RESP:
成功: 直接返回 wav 音频流, http code 200
失败: 返回包含错误信息的 json, http code 400
### 更换默认参考音频
endpoint: `/change_refer`
key与推理端一样
GET:
`http://127.0.0.1:9880/change_refer?refer_wav_path=123.wav&prompt_text=一二三。&prompt_language=zh`
POST:
```json
{
"refer_wav_path": "123.wav",
"prompt_text": "一二三。",
"prompt_language": "zh"
}
```
RESP:
成功: json, http code 200
失败: json, 400
### 命令控制
endpoint: `/control`
command:
"restart": 重新运行
"exit": 结束运行
GET:
`http://127.0.0.1:9880/control?command=restart`
POST:
```json
{
"command": "restart"
}
```
RESP: 无
"""
import argparse
import os,re
import sys
now_dir = os.getcwd()
sys.path.append(now_dir)
sys.path.append("%s/GPT_SoVITS" % (now_dir))
import signal
import LangSegment
from time import time as ttime
import torch
import librosa
import soundfile as sf
from fastapi import FastAPI, Request, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
import uvicorn
from transformers import AutoModelForMaskedLM, AutoTokenizer
import numpy as np
from feature_extractor import cnhubert
from io import BytesIO
from module.models import SynthesizerTrn
from AR.models.t2s_lightning_module import Text2SemanticLightningModule
from text import cleaned_text_to_sequence
from text.cleaner import clean_text
from module.mel_processing import spectrogram_torch
from tools.my_utils import load_audio
import config as global_config
import logging
import subprocess
class DefaultRefer:
def __init__(self, path, text, language):
self.path = args.default_refer_path
self.text = args.default_refer_text
self.language = args.default_refer_language
def is_ready(self) -> bool:
return is_full(self.path, self.text, self.language)
def is_empty(*items): # 任意一项不为空返回False
for item in items:
if item is not None and item != "":
return False
return True
def is_full(*items): # 任意一项为空返回False
for item in items:
if item is None or item == "":
return False
return True
def change_sovits_weights(sovits_path):
global vq_model, hps
dict_s2 = torch.load(sovits_path, map_location="cpu")
hps = dict_s2["config"]
hps = DictToAttrRecursive(hps)
hps.model.semantic_frame_rate = "25hz"
if dict_s2['weight']['enc_p.text_embedding.weight'].shape[0] == 322:
hps.model.version = "v1"
else:
hps.model.version = "v2"
print("sovits版本:",hps.model.version)
model_params_dict = vars(hps.model)
vq_model = SynthesizerTrn(
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**model_params_dict
)
if ("pretrained" not in sovits_path):
del vq_model.enc_q
if is_half == True:
vq_model = vq_model.half().to(device)
else:
vq_model = vq_model.to(device)
vq_model.eval()
vq_model.load_state_dict(dict_s2["weight"], strict=False)
def change_gpt_weights(gpt_path):
global hz, max_sec, t2s_model, config
hz = 50
dict_s1 = torch.load(gpt_path, map_location="cpu")
config = dict_s1["config"]
max_sec = config["data"]["max_sec"]
t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
t2s_model.load_state_dict(dict_s1["weight"])
if is_half == True:
t2s_model = t2s_model.half()
t2s_model = t2s_model.to(device)
t2s_model.eval()
total = sum([param.nelement() for param in t2s_model.parameters()])
logger.info("Number of parameter: %.2fM" % (total / 1e6))
def get_bert_feature(text, word2ph):
with torch.no_grad():
inputs = tokenizer(text, return_tensors="pt")
for i in inputs:
inputs[i] = inputs[i].to(device) #####输入是long不用管精度问题,精度随bert_model
res = bert_model(**inputs, output_hidden_states=True)
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
assert len(word2ph) == len(text)
phone_level_feature = []
for i in range(len(word2ph)):
repeat_feature = res[i].repeat(word2ph[i], 1)
phone_level_feature.append(repeat_feature)
phone_level_feature = torch.cat(phone_level_feature, dim=0)
# if(is_half==True):phone_level_feature=phone_level_feature.half()
return phone_level_feature.T
def clean_text_inf(text, language, version):
phones, word2ph, norm_text = clean_text(text, language, version)
phones = cleaned_text_to_sequence(phones, version)
return phones, word2ph, norm_text
def get_bert_inf(phones, word2ph, norm_text, language):
language=language.replace("all_","")
if language == "zh":
bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
else:
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
return bert
from text import chinese
def get_phones_and_bert(text,language,version):
if language in {"en", "all_zh", "all_ja", "all_ko", "all_yue"}:
language = language.replace("all_","")
if language == "en":
LangSegment.setfilters(["en"])
formattext = " ".join(tmp["text"] for tmp in LangSegment.getTexts(text))
else:
# 因无法区别中日韩文汉字,以用户输入为准
formattext = text
while " " in formattext:
formattext = formattext.replace(" ", " ")
if language == "zh":
if re.search(r'[A-Za-z]', formattext):
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
formattext = chinese.text_normalize(formattext)
return get_phones_and_bert(formattext,"zh",version)
else:
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
bert = get_bert_feature(norm_text, word2ph).to(device)
elif language == "yue" and re.search(r'[A-Za-z]', formattext):
formattext = re.sub(r'[a-z]', lambda x: x.group(0).upper(), formattext)
formattext = chinese.text_normalize(formattext)
return get_phones_and_bert(formattext,"yue",version)
else:
phones, word2ph, norm_text = clean_text_inf(formattext, language, version)
bert = torch.zeros(
(1024, len(phones)),
dtype=torch.float16 if is_half == True else torch.float32,
).to(device)
elif language in {"zh", "ja", "ko", "yue", "auto", "auto_yue"}:
textlist=[]
langlist=[]
LangSegment.setfilters(["zh","ja","en","ko"])
if language == "auto":
for tmp in LangSegment.getTexts(text):
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
elif language == "auto_yue":
for tmp in LangSegment.getTexts(text):
if tmp["lang"] == "zh":
tmp["lang"] = "yue"
langlist.append(tmp["lang"])
textlist.append(tmp["text"])
else:
for tmp in LangSegment.getTexts(text):
if tmp["lang"] == "en":
langlist.append(tmp["lang"])
else:
# 因无法区别中日韩文汉字,以用户输入为准
langlist.append(language)
textlist.append(tmp["text"])
phones_list = []
bert_list = []
norm_text_list = []
for i in range(len(textlist)):
lang = langlist[i]
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang, version)
bert = get_bert_inf(phones, word2ph, norm_text, lang)
phones_list.append(phones)
norm_text_list.append(norm_text)
bert_list.append(bert)
bert = torch.cat(bert_list, dim=1)
phones = sum(phones_list, [])
norm_text = ''.join(norm_text_list)
return phones,bert.to(torch.float16 if is_half == True else torch.float32),norm_text
class DictToAttrRecursive(dict):
def __init__(self, input_dict):
super().__init__(input_dict)
for key, value in input_dict.items():
if isinstance(value, dict):
value = DictToAttrRecursive(value)
self[key] = value
setattr(self, key, value)
def __getattr__(self, item):
try:
return self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def __setattr__(self, key, value):
if isinstance(value, dict):
value = DictToAttrRecursive(value)
super(DictToAttrRecursive, self).__setitem__(key, value)
super().__setattr__(key, value)
def __delattr__(self, item):
try:
del self[item]
except KeyError:
raise AttributeError(f"Attribute {item} not found")
def get_spepc(hps, filename):
audio = load_audio(filename, int(hps.data.sampling_rate))
audio = torch.FloatTensor(audio)
audio_norm = audio
audio_norm = audio_norm.unsqueeze(0)
spec = spectrogram_torch(audio_norm, hps.data.filter_length, hps.data.sampling_rate, hps.data.hop_length,
hps.data.win_length, center=False)
return spec
def pack_audio(audio_bytes, data, rate):
if media_type == "ogg":
audio_bytes = pack_ogg(audio_bytes, data, rate)
elif media_type == "aac":
audio_bytes = pack_aac(audio_bytes, data, rate)
else:
# wav无法流式, 先暂存raw
audio_bytes = pack_raw(audio_bytes, data, rate)
return audio_bytes
def pack_ogg(audio_bytes, data, rate):
# Author: AkagawaTsurunaki
# Issue:
# Stack overflow probabilistically occurs
# when the function `sf_writef_short` of `libsndfile_64bit.dll` is called
# using the Python library `soundfile`
# Note:
# This is an issue related to `libsndfile`, not this project itself.
# It happens when you generate a large audio tensor (about 499804 frames in my PC)
# and try to convert it to an ogg file.
# Related:
# https://github.com/RVC-Boss/GPT-SoVITS/issues/1199
# https://github.com/libsndfile/libsndfile/issues/1023
# https://github.com/bastibe/python-soundfile/issues/396
# Suggestion:
# Or split the whole audio data into smaller audio segment to avoid stack overflow?
def handle_pack_ogg():
with sf.SoundFile(audio_bytes, mode='w', samplerate=rate, channels=1, format='ogg') as audio_file:
audio_file.write(data)
import threading
# See: https://docs.python.org/3/library/threading.html
# The stack size of this thread is at least 32768
# If stack overflow error still occurs, just modify the `stack_size`.
# stack_size = n * 4096, where n should be a positive integer.
# Here we chose n = 4096.
stack_size = 4096 * 4096
try:
threading.stack_size(stack_size)
pack_ogg_thread = threading.Thread(target=handle_pack_ogg)
pack_ogg_thread.start()
pack_ogg_thread.join()
except RuntimeError as e:
# If changing the thread stack size is unsupported, a RuntimeError is raised.
print("RuntimeError: {}".format(e))
print("Changing the thread stack size is unsupported.")
except ValueError as e:
# If the specified stack size is invalid, a ValueError is raised and the stack size is unmodified.
print("ValueError: {}".format(e))
print("The specified stack size is invalid.")
return audio_bytes
def pack_raw(audio_bytes, data, rate):
audio_bytes.write(data.tobytes())
return audio_bytes
def pack_wav(audio_bytes, rate):
data = np.frombuffer(audio_bytes.getvalue(),dtype=np.int16)
wav_bytes = BytesIO()
sf.write(wav_bytes, data, rate, format='wav')
return wav_bytes
def pack_aac(audio_bytes, data, rate):
process = subprocess.Popen([
'ffmpeg',
'-f', 's16le', # 输入16位有符号小端整数PCM
'-ar', str(rate), # 设置采样率
'-ac', '1', # 单声道
'-i', 'pipe:0', # 从管道读取输入
'-c:a', 'aac', # 音频编码器为AAC
'-b:a', '192k', # 比特率
'-vn', # 不包含视频
'-f', 'adts', # 输出AAC数据流格式
'pipe:1' # 将输出写入管道
], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, _ = process.communicate(input=data.tobytes())
audio_bytes.write(out)
return audio_bytes
def read_clean_buffer(audio_bytes):
audio_chunk = audio_bytes.getvalue()
audio_bytes.truncate(0)
audio_bytes.seek(0)
return audio_bytes, audio_chunk
def cut_text(text, punc):
punc_list = [p for p in punc if p in {",", ".", ";", "?", "!", "、", ",", "。", "?", "!", ";", ":", "…"}]
if len(punc_list) > 0:
punds = r"[" + "".join(punc_list) + r"]"
text = text.strip("\n")
items = re.split(f"({punds})", text)
mergeitems = ["".join(group) for group in zip(items[::2], items[1::2])]
# 在句子不存在符号或句尾无符号的时候保证文本完整
if len(items)%2 == 1:
mergeitems.append(items[-1])
text = "\n".join(mergeitems)
while "\n\n" in text:
text = text.replace("\n\n", "\n")
return text
def only_punc(text):
return not any(t.isalnum() or t.isalpha() for t in text)
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, top_k= 20, top_p = 0.6, temperature = 0.6, speed = 1):
t0 = ttime()
prompt_text = prompt_text.strip("\n")
prompt_language, text = prompt_language, text.strip("\n")
zero_wav = np.zeros(int(hps.data.sampling_rate * 0.3), dtype=np.float16 if is_half == True else np.float32)
with torch.no_grad():
wav16k, sr = librosa.load(ref_wav_path, sr=16000)
wav16k = torch.from_numpy(wav16k)
zero_wav_torch = torch.from_numpy(zero_wav)
if (is_half == True):
wav16k = wav16k.half().to(device)
zero_wav_torch = zero_wav_torch.half().to(device)
else:
wav16k = wav16k.to(device)
zero_wav_torch = zero_wav_torch.to(device)
wav16k = torch.cat([wav16k, zero_wav_torch])
ssl_content = ssl_model.model(wav16k.unsqueeze(0))["last_hidden_state"].transpose(1, 2) # .float()
codes = vq_model.extract_latent(ssl_content)
prompt_semantic = codes[0, 0]
t1 = ttime()
version = vq_model.version
os.environ['version'] = version
prompt_language = dict_language[prompt_language.lower()]
text_language = dict_language[text_language.lower()]
phones1, bert1, norm_text1 = get_phones_and_bert(prompt_text, prompt_language, version)
texts = text.split("\n")
audio_bytes = BytesIO()
for text in texts:
# 简单防止纯符号引发参考音频泄露
if only_punc(text):
continue
audio_opt = []
phones2, bert2, norm_text2 = get_phones_and_bert(text, text_language, version)
bert = torch.cat([bert1, bert2], 1)
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
prompt = prompt_semantic.unsqueeze(0).to(device)
t2 = ttime()
with torch.no_grad():
# pred_semantic = t2s_model.model.infer(
pred_semantic, idx = t2s_model.model.infer_panel(
all_phoneme_ids,
all_phoneme_len,
prompt,
bert,
# prompt_phone_len=ph_offset,
top_k = top_k,
top_p = top_p,
temperature = temperature,
early_stop_num=hz * max_sec)
t3 = ttime()
# print(pred_semantic.shape,idx)
pred_semantic = pred_semantic[:, -idx:].unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次
refer = get_spepc(hps, ref_wav_path) # .to(device)
if (is_half == True):
refer = refer.half().to(device)
else:
refer = refer.to(device)
# audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
audio = \
vq_model.decode(pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0),
refer,speed=speed).detach().cpu().numpy()[
0, 0] ###试试重建不带上prompt部分
audio_opt.append(audio)
audio_opt.append(zero_wav)
t4 = ttime()
audio_bytes = pack_audio(audio_bytes,(np.concatenate(audio_opt, 0) * 32768).astype(np.int16),hps.data.sampling_rate)
# logger.info("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
if stream_mode == "normal":
audio_bytes, audio_chunk = read_clean_buffer(audio_bytes)
yield audio_chunk
if not stream_mode == "normal":
if media_type == "wav":
audio_bytes = pack_wav(audio_bytes,hps.data.sampling_rate)
yield audio_bytes.getvalue()
def handle_control(command):
if command == "restart":
os.execl(g_config.python_exec, g_config.python_exec, *sys.argv)
elif command == "exit":
os.kill(os.getpid(), signal.SIGTERM)
exit(0)
def handle_change(path, text, language):
if is_empty(path, text, language):
return JSONResponse({"code": 400, "message": '缺少任意一项以下参数: "path", "text", "language"'}, status_code=400)
if path != "" or path is not None:
default_refer.path = path
if text != "" or text is not None:
default_refer.text = text
if language != "" or language is not None:
default_refer.language = language
logger.info(f"当前默认参考音频路径: {default_refer.path}")
logger.info(f"当前默认参考音频文本: {default_refer.text}")
logger.info(f"当前默认参考音频语种: {default_refer.language}")
logger.info(f"is_ready: {default_refer.is_ready()}")
return JSONResponse({"code": 0, "message": "Success"}, status_code=200)
def handle(refer_wav_path, prompt_text, prompt_language, text, text_language, cut_punc, top_k, top_p, temperature, speed):
if (
refer_wav_path == "" or refer_wav_path is None
or prompt_text == "" or prompt_text is None
or prompt_language == "" or prompt_language is None
):
refer_wav_path, prompt_text, prompt_language = (
default_refer.path,
default_refer.text,
default_refer.language,
)
if not default_refer.is_ready():
return JSONResponse({"code": 400, "message": "未指定参考音频且接口无预设"}, status_code=400)
if cut_punc == None:
text = cut_text(text,default_cut_punc)
else:
text = cut_text(text,cut_punc)
return StreamingResponse(get_tts_wav(refer_wav_path, prompt_text, prompt_language, text, text_language, top_k, top_p, temperature, speed), media_type="audio/"+media_type)
# --------------------------------
# 初始化部分
# --------------------------------
dict_language = {
"中文": "all_zh",
"粤语": "all_yue",
"英文": "en",
"日文": "all_ja",
"韩文": "all_ko",
"中英混合": "zh",
"粤英混合": "yue",
"日英混合": "ja",
"韩英混合": "ko",
"多语种混合": "auto", #多语种启动切分识别语种
"多语种混合(粤语)": "auto_yue",
"all_zh": "all_zh",
"all_yue": "all_yue",
"en": "en",
"all_ja": "all_ja",
"all_ko": "all_ko",
"zh": "zh",
"yue": "yue",
"ja": "ja",
"ko": "ko",
"auto": "auto",
"auto_yue": "auto_yue",
}
# logger
logging.config.dictConfig(uvicorn.config.LOGGING_CONFIG)
logger = logging.getLogger('uvicorn')
# 获取配置
g_config = global_config.Config()
# 获取参数
parser = argparse.ArgumentParser(description="GPT-SoVITS api")
parser.add_argument("-s", "--sovits_path", type=str, default=g_config.sovits_path, help="SoVITS模型路径")
parser.add_argument("-g", "--gpt_path", type=str, default=g_config.gpt_path, help="GPT模型路径")
parser.add_argument("-dr", "--default_refer_path", type=str, default="", help="默认参考音频路径")
parser.add_argument("-dt", "--default_refer_text", type=str, default="", help="默认参考音频文本")
parser.add_argument("-dl", "--default_refer_language", type=str, default="", help="默认参考音频语种")
parser.add_argument("-d", "--device", type=str, default=g_config.infer_device, help="cuda / cpu")
parser.add_argument("-a", "--bind_addr", type=str, default="0.0.0.0", help="default: 0.0.0.0")
parser.add_argument("-p", "--port", type=int, default=g_config.api_port, help="default: 9880")
parser.add_argument("-fp", "--full_precision", action="store_true", default=False, help="覆盖config.is_half为False, 使用全精度")
parser.add_argument("-hp", "--half_precision", action="store_true", default=False, help="覆盖config.is_half为True, 使用半精度")
# bool值的用法为 `python ./api.py -fp ...`
# 此时 full_precision==True, half_precision==False
parser.add_argument("-sm", "--stream_mode", type=str, default="close", help="流式返回模式, close / normal / keepalive")
parser.add_argument("-mt", "--media_type", type=str, default="wav", help="音频编码格式, wav / ogg / aac")
parser.add_argument("-cp", "--cut_punc", type=str, default="", help="文本切分符号设定, 符号范围,.;?!、,。?!;:…")
# 切割常用分句符为 `python ./api.py -cp ".?!。?!"`
parser.add_argument("-hb", "--hubert_path", type=str, default=g_config.cnhubert_path, help="覆盖config.cnhubert_path")
parser.add_argument("-b", "--bert_path", type=str, default=g_config.bert_path, help="覆盖config.bert_path")
args = parser.parse_args()
sovits_path = args.sovits_path
gpt_path = args.gpt_path
device = args.device
port = args.port
host = args.bind_addr
cnhubert_base_path = args.hubert_path
bert_path = args.bert_path
default_cut_punc = args.cut_punc
# 应用参数配置
default_refer = DefaultRefer(args.default_refer_path, args.default_refer_text, args.default_refer_language)
# 模型路径检查
if sovits_path == "":
sovits_path = g_config.pretrained_sovits_path
logger.warn(f"未指定SoVITS模型路径, fallback后当前值: {sovits_path}")
if gpt_path == "":
gpt_path = g_config.pretrained_gpt_path
logger.warn(f"未指定GPT模型路径, fallback后当前值: {gpt_path}")
# 指定默认参考音频, 调用方 未提供/未给全 参考音频参数时使用
if default_refer.path == "" or default_refer.text == "" or default_refer.language == "":
default_refer.path, default_refer.text, default_refer.language = "", "", ""
logger.info("未指定默认参考音频")
else:
logger.info(f"默认参考音频路径: {default_refer.path}")
logger.info(f"默认参考音频文本: {default_refer.text}")
logger.info(f"默认参考音频语种: {default_refer.language}")
# 获取半精度
is_half = g_config.is_half
if args.full_precision:
is_half = False
if args.half_precision:
is_half = True
if args.full_precision and args.half_precision:
is_half = g_config.is_half # 炒饭fallback
logger.info(f"半精: {is_half}")
# 流式返回模式
if args.stream_mode.lower() in ["normal","n"]:
stream_mode = "normal"
logger.info("流式返回已开启")
else:
stream_mode = "close"
# 音频编码格式
if args.media_type.lower() in ["aac","ogg"]:
media_type = args.media_type.lower()
elif stream_mode == "close":
media_type = "wav"
else:
media_type = "ogg"
logger.info(f"编码格式: {media_type}")
# 初始化模型
cnhubert.cnhubert_base_path = cnhubert_base_path
tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
ssl_model = cnhubert.get_model()
if is_half:
bert_model = bert_model.half().to(device)
ssl_model = ssl_model.half().to(device)
else:
bert_model = bert_model.to(device)
ssl_model = ssl_model.to(device)
change_sovits_weights(sovits_path)
change_gpt_weights(gpt_path)
# --------------------------------
# 接口部分
# --------------------------------
app = FastAPI()
@app.post("/set_model")
async def set_model(request: Request):
json_post_raw = await request.json()
global gpt_path
gpt_path=json_post_raw.get("gpt_model_path")
global sovits_path
sovits_path=json_post_raw.get("sovits_model_path")
logger.info("gptpath"+gpt_path+";vitspath"+sovits_path)
change_sovits_weights(sovits_path)
change_gpt_weights(gpt_path)
return "ok"
@app.post("/control")
async def control(request: Request):
json_post_raw = await request.json()
return handle_control(json_post_raw.get("command"))
@app.get("/control")
async def control(command: str = None):
return handle_control(command)
@app.post("/change_refer")
async def change_refer(request: Request):
json_post_raw = await request.json()
return handle_change(
json_post_raw.get("refer_wav_path"),
json_post_raw.get("prompt_text"),
json_post_raw.get("prompt_language")
)
@app.get("/change_refer")
async def change_refer(
refer_wav_path: str = None,
prompt_text: str = None,
prompt_language: str = None
):
return handle_change(refer_wav_path, prompt_text, prompt_language)
@app.post("/")
async def tts_endpoint(request: Request):
json_post_raw = await request.json()
return handle(
json_post_raw.get("refer_wav_path"),
json_post_raw.get("prompt_text"),
json_post_raw.get("prompt_language"),
json_post_raw.get("text"),
json_post_raw.get("text_language"),
json_post_raw.get("cut_punc"),
json_post_raw.get("top_k", 10),
json_post_raw.get("top_p", 1.0),
json_post_raw.get("temperature", 1.0),
json_post_raw.get("speed", 1.0)
)
@app.get("/")
async def tts_endpoint(
refer_wav_path: str = None,
prompt_text: str = None,
prompt_language: str = None,
text: str = None,
text_language: str = None,
cut_punc: str = None,
top_k: int = 10,
top_p: float = 1.0,
temperature: float = 1.0,
speed: float = 1.0
):
return handle(refer_wav_path, prompt_text, prompt_language, text, text_language, cut_punc, top_k, top_p, temperature, speed)
if __name__ == "__main__":
uvicorn.run(app, host=host, port=port, workers=1)
|