Spaces:
Running
on
Zero
Running
on
Zero
from torch.nn.functional import * | |
from torch.nn.functional import ( | |
_mha_shape_check, | |
_canonical_mask, | |
_none_or_dtype, | |
_in_projection_packed, | |
) | |
def multi_head_attention_forward_patched( | |
query, | |
key, | |
value, | |
embed_dim_to_check: int, | |
num_heads: int, | |
in_proj_weight, | |
in_proj_bias: Optional[Tensor], | |
bias_k: Optional[Tensor], | |
bias_v: Optional[Tensor], | |
add_zero_attn: bool, | |
dropout_p: float, | |
out_proj_weight: Tensor, | |
out_proj_bias: Optional[Tensor], | |
training: bool = True, | |
key_padding_mask: Optional[Tensor] = None, | |
need_weights: bool = True, | |
attn_mask: Optional[Tensor] = None, | |
use_separate_proj_weight: bool = False, | |
q_proj_weight: Optional[Tensor] = None, | |
k_proj_weight: Optional[Tensor] = None, | |
v_proj_weight: Optional[Tensor] = None, | |
static_k: Optional[Tensor] = None, | |
static_v: Optional[Tensor] = None, | |
average_attn_weights: bool = True, | |
is_causal: bool = False, | |
cache=None, | |
) -> Tuple[Tensor, Optional[Tensor]]: | |
# set up shape vars | |
_, _, embed_dim = query.shape | |
attn_mask = _canonical_mask( | |
mask=attn_mask, | |
mask_name="attn_mask", | |
other_type=None, | |
other_name="", | |
target_type=query.dtype, | |
check_other=False, | |
) | |
head_dim = embed_dim // num_heads | |
proj_qkv = linear(query, in_proj_weight, in_proj_bias) | |
proj_qkv = proj_qkv.unflatten(-1, (3, query.size(-1))).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous() | |
q, k, v = proj_qkv[0], proj_qkv[1], proj_qkv[2] | |
if cache["first_infer"] == 1: | |
cache["k"][cache["stage"]] = k | |
cache["v"][cache["stage"]] = v | |
else: | |
cache["k"][cache["stage"]] = torch.cat([cache["k"][cache["stage"]][:-1], k], 0) | |
cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]][:-1], v], 0) | |
k = cache["k"][cache["stage"]] | |
v = cache["v"][cache["stage"]] | |
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"] | |
attn_mask = _canonical_mask( | |
mask=attn_mask, | |
mask_name="attn_mask", | |
other_type=None, | |
other_name="", | |
target_type=q.dtype, | |
check_other=False, | |
) | |
attn_mask = attn_mask.unsqueeze(0) | |
q = q.view(-1, num_heads, head_dim).transpose(0, 1) | |
k = k.view(-1, num_heads, head_dim).transpose(0, 1) | |
v = v.view(-1, num_heads, head_dim).transpose(0, 1) | |
dropout_p = 0.0 | |
attn_mask = attn_mask.unsqueeze(0) | |
q = q.view(num_heads, -1, head_dim).unsqueeze(0) | |
k = k.view(num_heads, -1, head_dim).unsqueeze(0) | |
v = v.view(num_heads, -1, head_dim).unsqueeze(0) | |
attn_output = scaled_dot_product_attention( | |
q, k, v, attn_mask, dropout_p, is_causal | |
) | |
attn_output = ( | |
attn_output.permute(2, 0, 1, 3).contiguous().view(-1, embed_dim) | |
) | |
attn_output = linear(attn_output, out_proj_weight, out_proj_bias) | |
attn_output = attn_output.view(-1, 1, attn_output.size(1)) | |
return attn_output | |