Spaces:
Running
Running
# -*- coding: utf-8 -*- | |
import sys,os | |
inp_text= os.environ.get("inp_text") | |
inp_wav_dir= os.environ.get("inp_wav_dir") | |
exp_name= os.environ.get("exp_name") | |
i_part= os.environ.get("i_part") | |
all_parts= os.environ.get("all_parts") | |
os.environ["CUDA_VISIBLE_DEVICES"]= os.environ.get("_CUDA_VISIBLE_DEVICES") | |
from feature_extractor import cnhubert | |
opt_dir= os.environ.get("opt_dir") | |
cnhubert.cnhubert_base_path= os.environ.get("cnhubert_base_dir") | |
is_half=eval(os.environ.get("is_half","True")) | |
import pdb,traceback,numpy as np,logging | |
from scipy.io import wavfile | |
import librosa,torch | |
now_dir = os.getcwd() | |
sys.path.append(now_dir) | |
from tools.my_utils import load_audio | |
# from config import cnhubert_base_path | |
# cnhubert.cnhubert_base_path=cnhubert_base_path | |
# inp_text=sys.argv[1] | |
# inp_wav_dir=sys.argv[2] | |
# exp_name=sys.argv[3] | |
# i_part=sys.argv[4] | |
# all_parts=sys.argv[5] | |
# os.environ["CUDA_VISIBLE_DEVICES"]=sys.argv[6] | |
# cnhubert.cnhubert_base_path=sys.argv[7] | |
# opt_dir="/data/docker/liujing04/gpt-vits/fine_tune_dataset/%s"%exp_name | |
from time import time as ttime | |
import shutil | |
def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path | |
dir=os.path.dirname(path) | |
name=os.path.basename(path) | |
# tmp_path="%s/%s%s.pth"%(dir,ttime(),i_part) | |
tmp_path="%s%s.pth"%(ttime(),i_part) | |
torch.save(fea,tmp_path) | |
shutil.move(tmp_path,"%s/%s"%(dir,name)) | |
hubert_dir="%s/4-cnhubert"%(opt_dir) | |
wav32dir="%s/5-wav32k"%(opt_dir) | |
os.makedirs(opt_dir,exist_ok=True) | |
os.makedirs(hubert_dir,exist_ok=True) | |
os.makedirs(wav32dir,exist_ok=True) | |
maxx=0.95 | |
alpha=0.5 | |
if torch.cuda.is_available(): | |
device = "cuda:0" | |
# elif torch.backends.mps.is_available(): | |
# device = "mps" | |
else: | |
device = "cpu" | |
model=cnhubert.get_model() | |
# is_half=False | |
if(is_half==True): | |
model=model.half().to(device) | |
else: | |
model = model.to(device) | |
nan_fails=[] | |
def name2go(wav_name,wav_path): | |
hubert_path="%s/%s.pt"%(hubert_dir,wav_name) | |
if(os.path.exists(hubert_path)):return | |
tmp_audio = load_audio(wav_path, 32000) | |
tmp_max = np.abs(tmp_audio).max() | |
if tmp_max > 2.2: | |
print("%s-filtered,%s" % (wav_name, tmp_max)) | |
return | |
tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha*32768)) + ((1 - alpha)*32768) * tmp_audio | |
tmp_audio32b = (tmp_audio / tmp_max * (maxx * alpha*1145.14)) + ((1 - alpha)*1145.14) * tmp_audio | |
tmp_audio = librosa.resample( | |
tmp_audio32b, orig_sr=32000, target_sr=16000 | |
)#不是重采样问题 | |
tensor_wav16 = torch.from_numpy(tmp_audio) | |
if (is_half == True): | |
tensor_wav16=tensor_wav16.half().to(device) | |
else: | |
tensor_wav16 = tensor_wav16.to(device) | |
ssl=model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1,2).cpu()#torch.Size([1, 768, 215]) | |
if np.isnan(ssl.detach().numpy()).sum()!= 0: | |
nan_fails.append((wav_name,wav_path)) | |
print("nan filtered:%s"%wav_name) | |
return | |
wavfile.write( | |
"%s/%s"%(wav32dir,wav_name), | |
32000, | |
tmp_audio32.astype("int16"), | |
) | |
my_save(ssl,hubert_path) | |
with open(inp_text,"r",encoding="utf8")as f: | |
lines=f.read().strip("\n").split("\n") | |
for line in lines[int(i_part)::int(all_parts)]: | |
try: | |
# wav_name,text=line.split("\t") | |
wav_name, spk_name, language, text = line.split("|") | |
if (inp_wav_dir != "" and inp_wav_dir != None): | |
wav_name = os.path.basename(wav_name) | |
wav_path = "%s/%s"%(inp_wav_dir, wav_name) | |
else: | |
wav_path=wav_name | |
wav_name = os.path.basename(wav_name) | |
name2go(wav_name,wav_path) | |
except: | |
print(line,traceback.format_exc()) | |
if(len(nan_fails)>0 and is_half==True): | |
is_half=False | |
model=model.float() | |
for wav in nan_fails: | |
try: | |
name2go(wav[0],wav[1]) | |
except: | |
print(wav_name,traceback.format_exc()) | |