import gradio as gr import os from constants import VOICE_METHODS, BARK_VOICES, EDGE_VOICES import platform from models.model import * from tts.conversion import COQUI_LANGUAGES import pytube import os import traceback from pydub import AudioSegment # from audio_enhance.functions import audio_enhance import ast import argparse import glob import pickle import numpy as np import pandas as pd block_css = """ #notice_markdown { font-size: 104% } #notice_markdown th { display: none; } #notice_markdown td { padding-top: 6px; padding-bottom: 6px; } #leaderboard_markdown { font-size: 104% } #leaderboard_markdown td { padding-top: 6px; padding-bottom: 6px; } #leaderboard_dataframe td { line-height: 0.1em; } footer { display:none !important } .image-container { display: flex; align-items: center; padding: 1px; } .image-container img { margin: 0 30px; height: 20px; max-height: 100%; width: auto; max-width: 20%; } """ def model_hyperlink(model_name, link): return f'{model_name}' def load_leaderboard_table_csv(filename, add_hyperlink=True): lines = open(filename).readlines() heads = [v.strip() for v in lines[0].split(",")] rows = [] for i in range(1, len(lines)): row = [v.strip() for v in lines[i].split(",")] for j in range(len(heads)): item = {} for h, v in zip(heads, row): if h != "AI歌手名/AI Singer" and h != "歌手代表作或介绍链接" and h != "模型zip链接/Link to Model Zip File" and h != "模型贡献者/Model Contributor": item[h] = int(v) else: item[h] = v if add_hyperlink: item["AI歌手名/AI Singer"] = model_hyperlink(item["AI歌手名/AI Singer"], item["歌手代表作或介绍链接"]) rows.append(item) return rows def get_arena_table(model_table_df): # sort by rating model_table_df = model_table_df.sort_values(by=["训练素材时长/Duration of Training Dataset(min)"], ascending=False) values = [] for i in range(len(model_table_df)): row = [] model_key = model_table_df.index[i] model_name = model_table_df["AI歌手名/AI Singer"].values[model_key] # rank row.append(i + 1) # model display name row.append(model_name) row.append( model_table_df["模型zip链接/Link to Model Zip File"].values[model_key] ) row.append( model_table_df["训练素材时长/Duration of Training Dataset(min)"].values[model_key] ) row.append( model_table_df["训练epoch数/Epoch"].values[model_key] ) row.append( model_table_df["模型贡献者/Model Contributor"].values[model_key] ) values.append(row) return values title_markdown = ("""

🌊💕🎶 滔滔AI,AI歌手模型开源社区

🌟 完全开源、完全免费、共建共享!全网AI歌手任您选择!

""") pic_markdown = ("""

talktalkai-cover

""") data = load_leaderboard_table_csv("./OCRBench.csv") model_table_df = pd.DataFrame(data) text_size = gr.themes.sizes.text_lg with gr.Blocks(theme=gr.themes.Base(text_size=text_size), css=block_css) as app: gr.Markdown(title_markdown) with gr.Tab("✨模型搜索及上传"): gr.HTML("

1. 搜索AI歌手模型

") gr.Markdown("##### 点击[此链接](https://docs.google.com/spreadsheets/d/1owfUtQuLW9ReiIwg6U9UkkDmPOTkuNHf0OKQtWu1iaI/edit?gid=1227575351#gid=1227575351),查看全网所有开源AI歌手模型,超9000个模型任您挑选 🥳") search_name = gr.Textbox(placeholder="孙燕姿", label="请填写模型名称进行搜索", show_label=True) # Salida with gr.Row(): sarch_output = gr.Markdown(label="搜索结果") btn_search_model = gr.Button(value="开始搜索吧💖", variant="primary") btn_search_model.click(fn=search_model, inputs=[search_name], outputs=[sarch_output]) gr.HTML("

2. 上传AI歌手模型至社区

") gr.HTML("

上传完成后您立即可以搜索到您上传的模型

") post_name = gr.Textbox(placeholder="滔滔歌姬", label="请填写模型名称", show_label=True) post_model_url = gr.Textbox(placeholder="https://huggingface.co/kevinwang676/RVC-models/resolve/main/talktalkgirl.zip", label="模型链接", info="1.推荐使用Hugging Face存放模型 2.复制Hugging Face模型链接后,需要将链接中的blob四个字母替换成resolve,使模型可以通过链接直接下载", show_label=True) post_creator = gr.Textbox(placeholder="滔滔AI", label="模型贡献者", info="可填写您的昵称或任何有趣的ID", show_label=True) post_version = gr.Dropdown(choices=["RVC v1", "RVC v2"], value="RVC v2", label="RVC模型版本", show_label=True) # Salida with gr.Row(): post_output = gr.Markdown(label="模型上传状态") btn_post_model = gr.Button(value="开始上传吧💕", variant="primary") btn_post_model.click(fn=post_model, inputs=[post_name, post_model_url, post_version, post_creator], outputs=[post_output]) with gr.Tab("🍻滔滔AI精选模型"): arena_table_vals = get_arena_table(model_table_df) md = """ AI翻唱🎶:您可以在社区中复制您喜欢的AI歌手的“模型zip链接”,之后就可以在“🌟重磅首发 - AI歌手全明星💕”页面中通过粘贴zip链接来使用您喜欢的AI歌手模型啦!\n [手机端📱](https://g-app-center-40055665-0593-xqmmjg6.openxlab.space)查看 滔滔AI精选模型 """ gr.Markdown(md, elem_id="leaderboard_markdown") gr.Dataframe( headers=[ "排序", "AI歌手名/AI Singer", "模型zip链接/Link to Model Zip File", "训练素材时长/Duration of Training Dataset(min)", "训练epoch数/Epoch", "模型贡献者/Model Contributor", ], datatype=[ "str", "markdown", "str", "number", "number", "str", ], value=arena_table_vals, elem_id="arena_leaderboard_dataframe", height=800, column_widths=[50, 100, 205, 95, 95, 95], wrap=True, ) gr.Markdown(pic_markdown) gr.Markdown("######
注意❗:请不要生成会对个人以及组织造成侵害的内容,此程序仅供科研、学习及个人娱乐使用。请自觉合规使用此程序,程序开发者不负有任何责任。
") gr.HTML(''' ''') app.queue(max_size=40, api_open=False) app.launch(max_threads=400, show_error=True)