khadija3818 commited on
Commit
6353a53
1 Parent(s): cf493e1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -0
app.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import streamlit as st
3
+ from transformers import BertTokenizer, BertForSequenceClassification
4
+
5
+ # Load the pre-trained model and tokenizer
6
+ model_path = "https://huggingface.co/jonaskoenig/topic_classification_04" # Replace with the path to your saved model
7
+ tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
8
+ model = BertForSequenceClassification.from_pretrained(model_path)
9
+
10
+ # Set up Streamlit app
11
+ st.title("Topic Classification App")
12
+
13
+ # User input for text
14
+ user_input = st.text_area("Enter text for topic classification:", "")
15
+
16
+ # Function to make predictions
17
+ def predict_topic(text):
18
+ inputs = tokenizer(text, return_tensors="pt")
19
+ outputs = model(**inputs)
20
+ logits = outputs.logits
21
+ predicted_class = torch.argmax(logits, dim=1).item()
22
+ return predicted_class
23
+
24
+ # Make predictions and display result
25
+ if st.button("Predict"):
26
+ if user_input:
27
+ st.info("Making Prediction...")
28
+ prediction = predict_topic(user_input)
29
+ st.success(f"Predicted Topic: {prediction}")
30
+ else:
31
+ st.warning("Please enter some text for prediction.")