Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
# Load the model and tokenizer
|
5 |
+
model_name = "khaled123/chess"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
7 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
8 |
+
|
9 |
+
# Define the function to generate text
|
10 |
+
def generate_text(prompt):
|
11 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
12 |
+
outputs = model.generate(inputs["input_ids"], max_length=50)
|
13 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
14 |
+
return generated_text
|
15 |
+
|
16 |
+
# Create the Gradio interface
|
17 |
+
iface = gr.Interface(
|
18 |
+
fn=generate_text,
|
19 |
+
inputs="text",
|
20 |
+
outputs="text",
|
21 |
+
title="Chess Model based on LLaMA 2",
|
22 |
+
description="Type a prompt and the model will generate text based on it."
|
23 |
+
)
|
24 |
+
|
25 |
+
# Launch the interface
|
26 |
+
iface.launch()
|