import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model_name = "khaled123/chess" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # Define the function to generate text def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(inputs["input_ids"], max_length=50) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text # Create the Gradio interface iface = gr.Interface( fn=generate_text, inputs="text", outputs="text", title="Chess Model based on LLaMA 2", description="Type a prompt and the model will generate text based on it." ) # Launch the interface iface.launch()