Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, StoppingCriteria | |
import gradio as gr | |
import spaces | |
import torch | |
import numpy as np | |
import torch | |
import torchvision.transforms as T | |
from PIL import Image | |
from torchvision.transforms.functional import InterpolationMode | |
from transformers import AutoModel, AutoTokenizer | |
from threading import Thread | |
import re | |
import time | |
from PIL import Image | |
import torch | |
import spaces | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
torch.set_default_device('cuda') | |
IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
IMAGENET_STD = (0.229, 0.224, 0.225) | |
def build_transform(input_size): | |
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | |
transform = T.Compose([ | |
T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
T.ToTensor(), | |
T.Normalize(mean=MEAN, std=STD) | |
]) | |
return transform | |
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
best_ratio_diff = float('inf') | |
best_ratio = (1, 1) | |
area = width * height | |
for ratio in target_ratios: | |
target_aspect_ratio = ratio[0] / ratio[1] | |
ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
if ratio_diff < best_ratio_diff: | |
best_ratio_diff = ratio_diff | |
best_ratio = ratio | |
elif ratio_diff == best_ratio_diff: | |
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
best_ratio = ratio | |
return best_ratio | |
def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
orig_width, orig_height = image.size | |
aspect_ratio = orig_width / orig_height | |
# calculate the existing image aspect ratio | |
target_ratios = set( | |
(i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | |
i * j <= max_num and i * j >= min_num) | |
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
# find the closest aspect ratio to the target | |
target_aspect_ratio = find_closest_aspect_ratio( | |
aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
# calculate the target width and height | |
target_width = image_size * target_aspect_ratio[0] | |
target_height = image_size * target_aspect_ratio[1] | |
blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
# resize the image | |
resized_img = image.resize((target_width, target_height)) | |
processed_images = [] | |
for i in range(blocks): | |
box = ( | |
(i % (target_width // image_size)) * image_size, | |
(i // (target_width // image_size)) * image_size, | |
((i % (target_width // image_size)) + 1) * image_size, | |
((i // (target_width // image_size)) + 1) * image_size | |
) | |
# split the image | |
split_img = resized_img.crop(box) | |
processed_images.append(split_img) | |
assert len(processed_images) == blocks | |
if use_thumbnail and len(processed_images) != 1: | |
thumbnail_img = image.resize((image_size, image_size)) | |
processed_images.append(thumbnail_img) | |
return processed_images | |
def load_image(image_file, input_size=448, max_num=12): | |
image = Image.open(image_file).convert('RGB') | |
transform = build_transform(input_size=input_size) | |
images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) | |
pixel_values = [transform(image) for image in images] | |
pixel_values = torch.stack(pixel_values) | |
return pixel_values | |
model = AutoModel.from_pretrained( | |
"5CD-AI/Viet-InternVL2-1B", | |
torch_dtype=torch.bfloat16, | |
low_cpu_mem_usage=True, | |
trust_remote_code=True, | |
).eval().cuda() | |
tokenizer = AutoTokenizer.from_pretrained("5CD-AI/Viet-InternVL2-1B", trust_remote_code=True, use_fast=False) | |
def chat(message, history): | |
print(history) | |
print(message) | |
if len(history) == 0 or len(message["files"]) != 0: | |
test_image = message["files"][0]["path"] | |
else: | |
test_image = history[0][0][0] | |
pixel_values = load_image(test_image, max_num=12).to(torch.bfloat16).cuda() | |
generation_config = dict(max_new_tokens= 1024, do_sample=True, num_beams = 3, repetition_penalty=2.5) | |
if len(history) == 0: | |
question = '<image>\n'+message["text"] | |
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True) | |
else: | |
conv_history = [] | |
for chat_pair in history: | |
if chat_pair[1] is not None: | |
if len(conv_history) == 0 and len(message["files"]) == 0: | |
chat_pair[0] = '<image>\n' + chat_pair[0] | |
conv_history.append(tuple(chat_pair)) | |
print(conv_history) | |
if len(message["files"]) != 0: | |
question = '<image>\n'+message["text"] | |
else: | |
question = message["text"] | |
response, conv_history = model.chat(tokenizer, pixel_values, question, generation_config, history=conv_history, return_history=True) | |
print(f'User: {question}\nAssistant: {response}') | |
buffer = "" | |
for new_text in response: | |
buffer += new_text | |
generated_text_without_prompt = buffer[:] | |
time.sleep(0.01) | |
yield generated_text_without_prompt | |
demo = gr.ChatInterface( | |
fn=chat, | |
description="""Try [Vintern-1B](https://huggingface.co/5CD-AI/Viet-InternVL2-1B) in this demo. Vintern 1B is a multimodal large language model series, featuring models of various sizes. For each size, we release instruction-tuned models optimized for multimodal tasks. Vintern-1B consists of [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px), an MLP projector, and [Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct).""", | |
examples=[{"text": "Mô tả hình ảnh.", "files":["./demo_3.jpg"]}, | |
{"text": "Trích xuất các thông tin từ ảnh.", "files":["./demo_1.jpg"]}, | |
{"text": "Mô tả hình ảnh một cách chi tiết.", "files":["./demo_2.jpg"]}], | |
title="❄️ Vintern-1B ❄️", | |
multimodal=True, | |
) | |
demo.queue().launch() |