khang119966 commited on
Commit
df79c71
1 Parent(s): 7fa23e1

Delete configuration_llava_qwen2.py

Browse files
Files changed (1) hide show
  1. configuration_llava_qwen2.py +0 -202
configuration_llava_qwen2.py DELETED
@@ -1,202 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2024 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
- """ Qwen2 model configuration"""
16
-
17
- from transformers.configuration_utils import PretrainedConfig
18
- from transformers.utils import logging
19
-
20
-
21
- logger = logging.get_logger(__name__)
22
-
23
- QWEN2_PRETRAINED_CONFIG_ARCHIVE_MAP = {
24
- "Qwen/Qwen2-7B-beta": "https://huggingface.co/Qwen/Qwen2-7B-beta/resolve/main/config.json",
25
- }
26
-
27
-
28
- class Qwen2Config(PretrainedConfig):
29
- r"""
30
- This is the configuration class to store the configuration of a [`Qwen2Model`]. It is used to instantiate a
31
- Qwen2 model according to the specified arguments, defining the model architecture. Instantiating a configuration
32
- with the defaults will yield a similar configuration to that of
33
- Qwen2-7B-beta [Qwen/Qwen2-7B-beta](https://huggingface.co/Qwen/Qwen2-7B-beta).
34
-
35
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
- documentation from [`PretrainedConfig`] for more information.
37
-
38
-
39
- Args:
40
- vocab_size (`int`, *optional*, defaults to 151936):
41
- Vocabulary size of the Qwen2 model. Defines the number of different tokens that can be represented by the
42
- `inputs_ids` passed when calling [`Qwen2Model`]
43
- hidden_size (`int`, *optional*, defaults to 4096):
44
- Dimension of the hidden representations.
45
- intermediate_size (`int`, *optional*, defaults to 22016):
46
- Dimension of the MLP representations.
47
- num_hidden_layers (`int`, *optional*, defaults to 32):
48
- Number of hidden layers in the Transformer encoder.
49
- num_attention_heads (`int`, *optional*, defaults to 32):
50
- Number of attention heads for each attention layer in the Transformer encoder.
51
- num_key_value_heads (`int`, *optional*, defaults to 32):
52
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
53
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
54
- `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
55
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
56
- by meanpooling all the original heads within that group. For more details checkout [this
57
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
58
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
59
- The non-linear activation function (function or string) in the decoder.
60
- max_position_embeddings (`int`, *optional*, defaults to 32768):
61
- The maximum sequence length that this model might ever be used with.
62
- initializer_range (`float`, *optional*, defaults to 0.02):
63
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
64
- rms_norm_eps (`float`, *optional*, defaults to 1e-06):
65
- The epsilon used by the rms normalization layers.
66
- use_cache (`bool`, *optional*, defaults to `True`):
67
- Whether or not the model should return the last key/values attentions (not used by all models). Only
68
- relevant if `config.is_decoder=True`.
69
- tie_word_embeddings (`bool`, *optional*, defaults to `False`):
70
- Whether the model's input and output word embeddings should be tied.
71
- rope_theta (`float`, *optional*, defaults to 10000.0):
72
- The base period of the RoPE embeddings.
73
- use_sliding_window (`bool`, *optional*, defaults to `False`):
74
- Whether to use sliding window attention.
75
- sliding_window (`int`, *optional*, defaults to 4096):
76
- Sliding window attention (SWA) window size. If not specified, will default to `4096`.
77
- max_window_layers (`int`, *optional*, defaults to 28):
78
- The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
79
- attention_dropout (`float`, *optional*, defaults to 0.0):
80
- The dropout ratio for the attention probabilities.
81
-
82
- ```python
83
- >>> from transformers import Qwen2Model, Qwen2Config
84
-
85
- >>> # Initializing a Qwen2 style configuration
86
- >>> configuration = Qwen2Config()
87
-
88
- >>> # Initializing a model from the Qwen2-7B style configuration
89
- >>> model = Qwen2Model(configuration)
90
-
91
- >>> # Accessing the model configuration
92
- >>> configuration = model.config
93
- ```"""
94
-
95
- model_type = "qwen2"
96
- keys_to_ignore_at_inference = ["past_key_values"]
97
-
98
- def __init__(
99
- self,
100
- vocab_size=151936,
101
- hidden_size=4096,
102
- intermediate_size=22016,
103
- num_hidden_layers=32,
104
- num_attention_heads=32,
105
- num_key_value_heads=32,
106
- hidden_act="silu",
107
- max_position_embeddings=32768,
108
- initializer_range=0.02,
109
- rms_norm_eps=1e-6,
110
- use_cache=True,
111
- tie_word_embeddings=False,
112
- rope_theta=10000.0,
113
- use_sliding_window=False,
114
- sliding_window=4096,
115
- max_window_layers=28,
116
- attention_dropout=0.0,
117
- **kwargs,
118
- ):
119
- self.vocab_size = vocab_size
120
- self.max_position_embeddings = max_position_embeddings
121
- self.hidden_size = hidden_size
122
- self.intermediate_size = intermediate_size
123
- self.num_hidden_layers = num_hidden_layers
124
- self.num_attention_heads = num_attention_heads
125
- self.use_sliding_window = use_sliding_window
126
- self.sliding_window = sliding_window
127
- self.max_window_layers = max_window_layers
128
-
129
- # for backward compatibility
130
- if num_key_value_heads is None:
131
- num_key_value_heads = num_attention_heads
132
-
133
- self.num_key_value_heads = num_key_value_heads
134
- self.hidden_act = hidden_act
135
- self.initializer_range = initializer_range
136
- self.rms_norm_eps = rms_norm_eps
137
- self.use_cache = use_cache
138
- self.rope_theta = rope_theta
139
- self.attention_dropout = attention_dropout
140
-
141
- super().__init__(
142
- tie_word_embeddings=tie_word_embeddings,
143
- **kwargs,
144
- )
145
-
146
- from typing import Union
147
- from transformers import PretrainedConfig
148
- import os
149
-
150
-
151
- class SigLipVisionConfig(PretrainedConfig):
152
- model_type = "siglip_vision_model"
153
-
154
- def __init__(
155
- self,
156
- hidden_size=1152,
157
- image_mean=(0.5, 0.5, 0.5),
158
- intermediate_size=4304,
159
- num_hidden_layers=27,
160
- num_attention_heads=16,
161
- num_channels=3,
162
- image_size=384,
163
- patch_size=14,
164
- hidden_act="gelu_pytorch_tanh",
165
- layer_norm_eps=1e-6,
166
- attention_dropout=0.0,
167
- **kwargs,
168
- ):
169
- super().__init__(**kwargs)
170
-
171
- self.hidden_size = hidden_size
172
- self.intermediate_size = intermediate_size
173
- self.num_hidden_layers = num_hidden_layers
174
- self.num_attention_heads = num_attention_heads
175
- self.num_channels = num_channels
176
- self.patch_size = patch_size
177
- self.image_size = image_size
178
- self.attention_dropout = attention_dropout
179
- self.layer_norm_eps = layer_norm_eps
180
- self.hidden_act = hidden_act
181
- self.image_mean = image_mean
182
-
183
- @classmethod
184
- def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
185
- cls._set_token_in_kwargs(kwargs)
186
-
187
- config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
188
-
189
- # get the vision config dict if we are loading from SigLipConfig
190
- if config_dict.get("model_type") == "siglip":
191
- config_dict = config_dict["vision_config"]
192
-
193
- if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
194
- logger.warning(
195
- f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
196
- f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
197
- )
198
-
199
- return cls.from_dict(config_dict, **kwargs)
200
-
201
- class LlavaQwen2Config(Qwen2Config):
202
- model_type = "llava-qwen2"