Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,32 +7,34 @@ model = AutoModelForSeq2SeqLM.from_pretrained("merve/chatgpt-prompt-generator-v1
|
|
7 |
tokenizer2 = AutoTokenizer.from_pretrained("Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum")
|
8 |
model2 = AutoModelForSeq2SeqLM.from_pretrained("Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum", from_tf=True)
|
9 |
|
10 |
-
def generate(prompt):
|
11 |
-
|
12 |
batch = tokenizer(prompt, return_tensors="pt")
|
13 |
-
generated_ids = model.generate(batch["input_ids"], max_new_tokens=
|
14 |
output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
15 |
return output[0]
|
16 |
|
17 |
def generate2(prompt, max_new_tokens):
|
18 |
batch = tokenizer2(prompt, return_tensors="pt")
|
19 |
-
generated_ids = model2.generate(batch["input_ids"], max_new_tokens=
|
20 |
output = tokenizer2.batch_decode(generated_ids, skip_special_tokens=True)
|
21 |
return output[0]
|
|
|
22 |
def generate2_test(prompt):
|
23 |
batch = tokenizer2(prompt, return_tensors="pt")
|
24 |
generated_ids = model2.generate(batch["input_ids"], max_new_tokens=150)
|
25 |
output = tokenizer2.batch_decode(generated_ids, skip_special_tokens=True)
|
26 |
return output[0]
|
27 |
|
28 |
-
def generate_prompt(
|
29 |
-
if
|
30 |
-
return generate(prompt)
|
31 |
-
elif
|
32 |
return generate2(prompt, max_new_tokens)
|
33 |
#
|
34 |
-
|
|
|
|
|
35 |
output_component = gr.Textbox(label = "Prompt")
|
36 |
examples = [["photographer"], ["developer"]]
|
37 |
description = ""
|
38 |
-
gr.Interface(
|
|
|
7 |
tokenizer2 = AutoTokenizer.from_pretrained("Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum")
|
8 |
model2 = AutoModelForSeq2SeqLM.from_pretrained("Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum", from_tf=True)
|
9 |
|
10 |
+
def generate(prompt, max_new_tokens):
|
|
|
11 |
batch = tokenizer(prompt, return_tensors="pt")
|
12 |
+
generated_ids = model.generate(batch["input_ids"], max_new_tokens=max_new_tokens)
|
13 |
output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
14 |
return output[0]
|
15 |
|
16 |
def generate2(prompt, max_new_tokens):
|
17 |
batch = tokenizer2(prompt, return_tensors="pt")
|
18 |
+
generated_ids = model2.generate(batch["input_ids"], max_new_tokens=max_new_tokens)
|
19 |
output = tokenizer2.batch_decode(generated_ids, skip_special_tokens=True)
|
20 |
return output[0]
|
21 |
+
|
22 |
def generate2_test(prompt):
|
23 |
batch = tokenizer2(prompt, return_tensors="pt")
|
24 |
generated_ids = model2.generate(batch["input_ids"], max_new_tokens=150)
|
25 |
output = tokenizer2.batch_decode(generated_ids, skip_special_tokens=True)
|
26 |
return output[0]
|
27 |
|
28 |
+
def generate_prompt(aitype, prompt, max_new_tokens):
|
29 |
+
if aitype=='1':
|
30 |
+
return generate(prompt, max_new_tokens)
|
31 |
+
elif aitype=='2':
|
32 |
return generate2(prompt, max_new_tokens)
|
33 |
#
|
34 |
+
input_aitype = gr.Textbox(label = "Input a persona, e.g. photographer", value = "2")
|
35 |
+
input_prompt = gr.Textbox(label = "Input a persona, e.g. photographer", value = "photographer")
|
36 |
+
input_maxtokens = gr.Textbox(label = "max tokens", value = "150")
|
37 |
output_component = gr.Textbox(label = "Prompt")
|
38 |
examples = [["photographer"], ["developer"]]
|
39 |
description = ""
|
40 |
+
gr.Interface(generate_prompt, inputs = [input_aitype,input_prompt,input_maxtokens], outputs=output_component, examples=examples, title = "π¨π»βπ€ ChatGPT Prompt Generator v12 π¨π»βπ€", description=description).launch()
|