Spaces:
Build error
Build error
import gradio as gr | |
import os | |
import openai | |
import gradio as gr | |
from gradio import ChatInterface | |
import time | |
# Get the value of the openai_api_key from environment variable | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
# Import things that are needed generically from langchain | |
from langchain import LLMMathChain, SerpAPIWrapper | |
from langchain.agents import AgentType, initialize_agent, load_tools | |
from langchain.chat_models import ChatOpenAI | |
from langchain.tools import BaseTool, StructuredTool, Tool, tool | |
from langchain.tools import MoveFileTool, format_tool_to_openai_function | |
from langchain.schema import ( | |
AIMessage, | |
HumanMessage, | |
SystemMessage | |
) | |
from langchain.utilities import WikipediaAPIWrapper | |
from langchain.tools import AIPluginTool | |
# Question- how can one set up a system message for their Chatbot while using ChatInterface | |
# Example system message : system = SystemMessage(content = "You are a helpful AI assistant") | |
# driver | |
def predict_langchain(user_input, chatbot): | |
print(f"Chatbot : {chatbot}") | |
chat = ChatOpenAI(temperature=1.0, streaming=True, model='gpt-3.5-turbo-0613') | |
messages=[] | |
for conv in chatbot: | |
human = HumanMessage(content=conv[0]) | |
ai = AIMessage(content=conv[1]) | |
messages.append(human) | |
messages.append(ai) | |
messages.append(HumanMessage(content=user_input)) | |
# getting gpt3.5's response | |
gpt_response = chat(messages) | |
return gpt_response.content | |
def predict(inputs, chatbot): | |
print(f"Chatbot : {chatbot}") | |
messages = [] | |
for conv in chatbot: | |
user = conv[0] | |
messages.append({"role": "user", "content":user }) | |
if conv[1] is None: | |
break | |
assistant = conv[1] | |
messages.append({"role": "assistant", "content":assistant}) | |
# a ChatCompletion request | |
response = openai.ChatCompletion.create( | |
model='gpt-3.5-turbo', | |
messages= messages, # example : [{'role': 'user', 'content': "What is life? Answer in three words."}], | |
temperature=1.0, | |
stream=True # for streaming the output to chatbot | |
) | |
partial_message = "" | |
for chunk in response: | |
if len(chunk['choices'][0]['delta']) != 0: | |
print(chunk['choices'][0]['delta']['content']) | |
partial_message = partial_message + chunk['choices'][0]['delta']['content'] | |
yield partial_message | |
title = "🤖ChatGPT Interface" | |
description = "Chatbots are a popular application of large language models. Using gradio, you can easily build a demo of your chatbot model and share that with your users, or try it yourself using an intuitive chatbot UI." | |
examples = ["How are you?","What is love?"] | |
gr.ChatInterface(predict, | |
title=title, | |
description=description, | |
theme='gstaff/xkcd').queue().launch() |