|
import gradio as gr |
|
|
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline |
|
import torch |
|
|
|
MODEL_URL = "kingabzpro/Llama-3.1-8B-Instruct-Mental-Health-Classification" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_URL) |
|
|
|
model = AutoModelForSequenceClassification.from_pretrained(MODEL_URL, low_cpu_mem_usage=True, return_dict=True,torch_dtype=torch.float16, |
|
device_map="cpu") |
|
|
|
def prediction(news): |
|
|
|
clasifer = pipeline("text-generation", tokenizer=tokenizer, model=model, torch_dtype=torch.float16, |
|
device_map="cpu",) |
|
|
|
outputs = pipe(prompt, max_new_tokens=2, do_sample=True, temperature=0.1) |
|
preds = outputs[0]["generated_text"].split("label: ")[-1].strip()) |
|
|
|
return preds |
|
|
|
|
|
gradio_ui = gr.Interface( |
|
fn=prediction, |
|
title="Mental Health Disorder Classification", |
|
description=f"Input the text to generate a Mental Health Disorder.\n For this classification, the {MODEL_URL} model was used.", |
|
examples=[ |
|
['trouble sleeping, confused mind, restless heart. All out of tune'], |
|
["In the quiet hours, even the shadows seem too heavy to bear."], |
|
["Riding a tempest of emotions, where ecstatic highs crash into desolate lows without warning."] |
|
], |
|
inputs=gr.inputs.Textbox(lines=10, label="Write the text here"), |
|
outputs=gr.outputs.Label(num_top_classes=5, type="auto", label="Mental Health Disorder Category"), |
|
theme="huggingface", |
|
article="<p style='text-align: center'>Please read the tutorial to fine-tune the Llama 3.1 model on Mental Health Classification <a href='https://www.datacamp.com/tutorial/fine-tuning-llama-3-1' target='_blank'>https://www.datacamp.com/tutorial/fine-tuning-llama-3-1</a></p>", |
|
) |
|
|
|
gradio_ui.launch() |