Spaces:
Build error
Build error
import torch | |
from transformers import DistilBertForSequenceClassification | |
import os | |
# # Get the directory path of the current script | |
# script_dir = os.path.dirname(os.path.abspath(__file__)) | |
# model = DistilBertForSequenceClassification.from_pretrained("model.safetensors") | |
# Load model directly | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
tokenizer = AutoTokenizer.from_pretrained("lxs1/DistilBertForSequenceClassification_6h_768dim") | |
model = AutoModelForSequenceClassification.from_pretrained("lxs1/DistilBertForSequenceClassification_6h_768dim") | |
# from transformers import DistilBertTokenizerFast | |
# tokenizer = DistilBertTokenizerFast.from_pretrained('distilbert-base-uncased') | |
# Move the model to the GPU if available | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model.to(device) | |
def sentiment_class(summarized_text): | |
''' | |
# 1 = non-depressed | |
# 0 = depressed | |
returns: example:- array([[0.00493283, 0.9950671 ]], dtype=float32) | |
''' | |
inputs = tokenizer(summarized_text, padding = True, truncation = True, return_tensors='pt').to('cuda') | |
outputs = model(**inputs) | |
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
predictions = predictions.cpu().detach().numpy() | |
return predictions | |
def pattern_classification(): | |
return result | |
def corelation_analysis(): | |
return result |