Spaces:
Sleeping
Sleeping
File size: 7,539 Bytes
0c774af c1e14ae 0c774af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import pandas as pd
import numpy as np
import re
import os
import sys
import random
import transformers
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import torch
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
from transformers import T5Tokenizer, T5ForConditionalGeneration
import gradio as gr
def greet(co):
code_text = []
code_text.append(co)
code_text = ' '.join(code_text)
code_text = re.sub('\/\*[\S\s]*\*\/', '', code_text)
code_text = re.sub('\/\/.*', '', code_text)
code_text = re.sub('(\\\\n)+', '\\n', code_text)
# 1. CFA-CodeBERTa-small.pt -> CodeBERTa-small-v1 finetunig model
path = os.getcwd() + '/models/CFA-CodeBERTa-small.pt'
tokenizer = AutoTokenizer.from_pretrained("huggingface/CodeBERTa-small-v1")
input_ids = tokenizer.encode(
code_text, max_length=512, truncation=True, padding='max_length')
input_ids = torch.tensor([input_ids])
model = RobertaForSequenceClassification.from_pretrained(
path, num_labels=2)
model.to('cpu')
pred_1 = model(input_ids)[0].detach().cpu().numpy()[0]
# model(input_ids)[0].argmax().detach().cpu().numpy().item()
# 2. CFA-codebert-c.pt -> codebert-c finetuning model
path = os.getcwd() + '/models/CFA-codebert-c.pt'
tokenizer = AutoTokenizer.from_pretrained(path)
input_ids = tokenizer(code_text, padding=True, max_length=512,
truncation=True, return_token_type_ids=True)['input_ids']
input_ids = torch.tensor([input_ids])
model = AutoModelForSequenceClassification.from_pretrained(
path, num_labels=2)
model.to('cpu')
pred_2 = model(input_ids)[0].detach().cpu().numpy()[0]
# 3. CFA-codebert-c-v2.pt -> undersampling + codebert-c finetuning model
path = os.getcwd() + '/models/CFA-codebert-c-v2.pt'
tokenizer = RobertaTokenizer.from_pretrained(path)
input_ids = tokenizer(code_text, padding=True, max_length=512,
truncation=True, return_token_type_ids=True)['input_ids']
input_ids = torch.tensor([input_ids])
model = RobertaForSequenceClassification.from_pretrained(
path, num_labels=2)
model.to('cpu')
pred_3 = model(input_ids)[0].detach().cpu().numpy()
# 4. codeT5 finetuning model
path = os.getcwd() + '/models/CFA-codeT5'
model_params = {
# model_type: t5-base/t5-large
"MODEL": path,
"TRAIN_BATCH_SIZE": 8, # training batch size
"VALID_BATCH_SIZE": 8, # validation batch size
"VAL_EPOCHS": 1, # number of validation epochs
"MAX_SOURCE_TEXT_LENGTH": 512, # max length of source text
"MAX_TARGET_TEXT_LENGTH": 3, # max length of target text
"SEED": 2022, # set seed for reproducibility
}
data = pd.DataFrame({'code': [code_text]})
pred_4 = T5Trainer(
dataframe=data,
source_text="code",
model_params=model_params
)
pred_4 = int(pred_4[0])
# ensemble
tot_result = (pred_1 * 0.8 + pred_2 * 0.1 +
pred_3 * 0.1 + pred_4 * 0.1).argmax()
if tot_result == 0:
return "false positive !!"
else:
return "true positive !!"
# codeT5
class YourDataSetClass(Dataset):
def __init__(
self, dataframe, tokenizer, source_len, source_text):
self.tokenizer = tokenizer
self.data = dataframe
self.source_len = source_len
# self.summ_len = target_len
# self.target_text = self.data[target_text]
self.source_text = self.data[source_text]
def __len__(self):
return len(self.source_text)
def __getitem__(self, index):
source_text = str(self.source_text[index])
source_text = " ".join(source_text.split())
source = self.tokenizer.batch_encode_plus(
[source_text],
max_length=self.source_len,
pad_to_max_length=True,
truncation=True,
padding="max_length",
return_tensors="pt",
)
source_ids = source["input_ids"].squeeze()
source_mask = source["attention_mask"].squeeze()
return {
"source_ids": source_ids.to(dtype=torch.long),
"source_mask": source_mask.to(dtype=torch.long),
}
def validate(epoch, tokenizer, model, device, loader):
model.eval()
predictions = []
with torch.no_grad():
for _, data in enumerate(loader, 0):
ids = data['source_ids'].to(device, dtype=torch.long)
mask = data['source_mask'].to(device, dtype=torch.long)
generated_ids = model.generate(
input_ids=ids,
attention_mask=mask,
max_length=150,
num_beams=2,
repetition_penalty=2.5,
length_penalty=1.0,
early_stopping=True
)
preds = [tokenizer.decode(
g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids]
if ((preds != '0') | (preds != '1')):
preds = '0'
predictions.extend(preds)
return predictions
def T5Trainer(dataframe, source_text, model_params, step="test",):
torch.manual_seed(model_params["SEED"]) # pytorch random seed
np.random.seed(model_params["SEED"]) # numpy random seed
torch.backends.cudnn.deterministic = True
tokenizer = T5Tokenizer.from_pretrained(model_params["MODEL"])
model = T5ForConditionalGeneration.from_pretrained(model_params["MODEL"])
model = model.to('cpu')
dataframe = dataframe[[source_text]]
val_dataset = dataframe
val_set = YourDataSetClass(
val_dataset, tokenizer, model_params["MAX_SOURCE_TEXT_LENGTH"], source_text)
val_params = {
'batch_size': model_params["VALID_BATCH_SIZE"],
'shuffle': False,
'num_workers': 0
}
val_loader = DataLoader(val_set, **val_params)
for epoch in range(model_params["VAL_EPOCHS"]):
predictions = validate(epoch, tokenizer, model, 'cpu', val_loader)
return predictions
#################################################################################
'''demo = gr.Interface(
fn = greet,
inputs = "text",
outputs= "number")
demo.launch(share=True)
'''
with gr.Blocks() as demo1:
gr.Markdown(
"""
<h1 align="center">
False-Alarm-Detector
</h1>
""")
gr.Markdown(
"""
정적 분석기로 오류라고 보고된 코드를 입력하면,
오류가 True-positive 인지 False-positive 인지 분류 해 주는 프로그램이다.
""")
with gr.Accordion(label='모델에 대한 설명 ( 여기를 클릭 하시오. )',open=False):
gr.Markdown(
"""
총 3개의 모델을 사용하였다.
1. codeBERTa-small-v1
- codeBERTa-small-v1 설명
2. codeBERT - C
- codeBERT - C 설명
3. codeT5
- codeT5 설명
"""
)
with gr.Row():
with gr.Column():
inputs_1 = gr.Textbox(placeholder="코드를 입력하시오.", label='Code')
with gr.Row():
btn = gr.Button("결과 출력")
with gr.Column():
outputs_1 = gr.Text(label = 'Result')
btn.click(fn = greet, inputs = inputs_1, outputs= outputs_1)
if __name__ == "__main__":
demo1.launch()
|