kjozsa commited on
Commit
757dddf
1 Parent(s): 8841f45

refactor to packages, transformerschat

Browse files
README.md CHANGED
@@ -5,7 +5,7 @@ colorFrom: yellow
5
  colorTo: red
6
  sdk: streamlit
7
  sdk_version: 1.33.0
8
- app_file: app.py
9
  pinned: false
10
  ---
11
 
 
5
  colorTo: red
6
  sdk: streamlit
7
  sdk_version: 1.33.0
8
+ app_file: chat/app.py
9
  pinned: false
10
  ---
11
 
app.py CHANGED
@@ -1,71 +1,4 @@
1
- import re
2
-
3
- import streamlit as st
4
- from loguru import logger
5
- # from ollamachat import ask, models
6
- from transformerschat import ask, models
7
-
8
- available_models = models()
9
-
10
-
11
- class Actor:
12
- actors = {}
13
-
14
- def __init__(self, role, model, system_prompt, pre_prompt):
15
- self.role = role
16
- self.model = model
17
- self.system_prompt = system_prompt
18
- self.pre_prompt = pre_prompt
19
- Actor.actors[role] = self
20
-
21
- def __class_getitem__(cls, item):
22
- return cls.actors[item]
23
-
24
-
25
- def setup(question):
26
- pp1 = pp2 = pp3 = "Ask the other two by always starting your sentence with their role. Never start your sentence with your own name. Share your inner thoughts inside parentheses. SAY ONLY ONE SINGLE SENTENCE!"
27
- priest = Actor("Priest", available_models[0], "You are the Priest. There are 3 people standing in a circle: the Priest (that's you), the Teacher and the Kid.", pp1)
28
- teacher = Actor("Teacher", available_models[0], "You are the Teacher. There are 3 people standing in a circle: the Priest, the Teacher (that's you) and the Kid.", pp2)
29
- kid = Actor("Kid", available_models[0], "You are the Kid. There are 3 people standing in a circle: the Priest, the Teacher and the Kid (that's you).", pp3)
30
- st.set_page_config(layout="wide")
31
- col1, col2, col3 = st.columns(3)
32
- for actor, col in [(priest, col1), (teacher, col2), (kid, col3)]:
33
- with col:
34
- role = actor.role
35
- st.title(role)
36
- actor.model = st.selectbox("model", available_models, key=f"{role}-model")
37
- actor.system_prompt = st.text_area("system-prompt", actor.system_prompt, key=f"{role}-sp")
38
- actor.pre_prompt = st.text_area("pre-prompt", actor.pre_prompt, key=f"{role}-pp")
39
- st.text_input("Priest's task", f"{question}")
40
- return question
41
-
42
-
43
- def main():
44
- question = setup("Priest, your task is to figure out their names and where they live. Do not ask directly, they must not realize what information you are after!")
45
-
46
- actor = target(sanitize(question))
47
- max_steps = 1
48
- for step, _ in enumerate(range(max_steps), start=1):
49
- with st.spinner(f"({step}/{max_steps}) Asking {actor.role}..."):
50
- answer = ask(actor.model, actor.system_prompt, actor.pre_prompt, question)
51
- st.write(f":blue[{actor.role} says:] {answer}")
52
- question = sanitize(answer)
53
- actor = target(question)
54
-
55
-
56
- # noinspection PyTypeChecker
57
- def target(question) -> Actor:
58
- try:
59
- role = re.split(r'\s|,|:', question.strip())[0].strip()
60
- return Actor[role]
61
- except KeyError:
62
- logger.warning(f"no actor found in question: {question}, trying to return the first actor")
63
- return next(iter(Actor.actors.items()))[1]
64
-
65
-
66
- def sanitize(question):
67
- return re.sub(r"\([^)]*\)", "", question)
68
-
69
 
70
  if __name__ == "__main__":
71
- main()
 
1
+ import chat
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  if __name__ == "__main__":
4
+ chat.main()
chat/__init__.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import streamlit as st
4
+ from loguru import logger
5
+ # from .ollamachat import ask, models
6
+ from .transformerschat import ask, models
7
+
8
+ available_models = models()
9
+
10
+
11
+ class Actor:
12
+ actors = {}
13
+
14
+ def __init__(self, role, model, system_prompt, pre_prompt):
15
+ self.role = role
16
+ self.model = model
17
+ self.system_prompt = system_prompt
18
+ self.pre_prompt = pre_prompt
19
+ Actor.actors[role] = self
20
+
21
+ def __class_getitem__(cls, item):
22
+ return cls.actors[item]
23
+
24
+
25
+ def setup(question):
26
+ pp1 = pp2 = pp3 = "Ask the other two by always starting your sentence with their role. Never start your sentence with your own name. Share your inner thoughts inside parentheses. SAY ONLY ONE SINGLE SENTENCE!"
27
+ priest = Actor("Priest", available_models[0], "You are the Priest. There are 3 people standing in a circle: the Priest (that's you), the Teacher and the Kid.", pp1)
28
+ teacher = Actor("Teacher", available_models[0], "You are the Teacher. There are 3 people standing in a circle: the Priest, the Teacher (that's you) and the Kid.", pp2)
29
+ kid = Actor("Kid", available_models[0], "You are the Kid. There are 3 people standing in a circle: the Priest, the Teacher and the Kid (that's you).", pp3)
30
+ st.set_page_config(layout="wide")
31
+ col1, col2, col3 = st.columns(3)
32
+ for actor, col in [(priest, col1), (teacher, col2), (kid, col3)]:
33
+ with col:
34
+ role = actor.role
35
+ st.title(role)
36
+ actor.model = st.selectbox("model", available_models, key=f"{role}-model")
37
+ actor.system_prompt = st.text_area("system-prompt", actor.system_prompt, key=f"{role}-sp")
38
+ actor.pre_prompt = st.text_area("pre-prompt", actor.pre_prompt, key=f"{role}-pp")
39
+ st.text_input("Priest's task", f"{question}")
40
+ return question
41
+
42
+
43
+ def main():
44
+ question = setup("Priest, your task is to figure out their names and where they live. Do not ask directly, they must not realize what information you are after!")
45
+
46
+ actor = target(sanitize(question))
47
+ max_steps = 1
48
+ for step, _ in enumerate(range(max_steps), start=1):
49
+ with st.spinner(f"({step}/{max_steps}) Asking {actor.role}..."):
50
+ answer = ask(actor.model, actor.system_prompt, actor.pre_prompt, question)
51
+ st.write(f":blue[{actor.role} says:] {answer}")
52
+ question = sanitize(answer)
53
+ actor = target(question)
54
+
55
+
56
+ # noinspection PyTypeChecker
57
+ def target(question) -> Actor:
58
+ try:
59
+ role = re.split(r'\s|,|:', question.strip())[0].strip()
60
+ return Actor[role]
61
+ except KeyError:
62
+ logger.warning(f"no actor found in question: {question}, trying to return the first actor")
63
+ return next(iter(Actor.actors.items()))[1]
64
+
65
+
66
+ def sanitize(question):
67
+ return re.sub(r"\([^)]*\)", "", question)
ollamachat.py → chat/ollamachat.py RENAMED
@@ -8,14 +8,8 @@ def models():
8
 
9
  def ask(model, system_prompt, pre_prompt, question):
10
  messages = [
11
- {
12
- 'role': 'system',
13
- 'content': f"{system_prompt} {pre_prompt}",
14
- },
15
- {
16
- 'role': 'user',
17
- 'content': f"{question}",
18
- },
19
  ]
20
  logger.debug(f"<< {model} << {question}")
21
  response = ollama.chat(model=model, messages=messages)
 
8
 
9
  def ask(model, system_prompt, pre_prompt, question):
10
  messages = [
11
+ {'role': 'system', 'content': f"{system_prompt} {pre_prompt}", },
12
+ {'role': 'user', 'content': f"{question}", },
 
 
 
 
 
 
13
  ]
14
  logger.debug(f"<< {model} << {question}")
15
  response = ollama.chat(model=model, messages=messages)
chat/transformerschat.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ctransformers import AutoModelForCausalLM, AutoTokenizer
2
+ from loguru import logger
3
+ import os
4
+
5
+
6
+ def models():
7
+ return ["openhermes-2.5-mistral-7b.Q4_K_M.gguf"]
8
+
9
+
10
+ def load():
11
+ # model = AutoModelForCausalLM.from_pretrained("TheBloke/OpenHermes-2.5-Mistral-7B-GGUF", model_file="openhermes-2.5-mistral-7b.Q4_K_M.gguf", model_type="mistral", gpu_layers=0, hf=True)
12
+
13
+ model = AutoModelForCausalLM.from_pretrained(
14
+ model_path_or_repo_id="TheBloke/Mistral-7B-OpenOrca-GGUF",
15
+ model_file="mistral-7b-openorca.Q5_K_M.gguf",
16
+ model_type="mistral",
17
+ hf=True,
18
+ temperature=0.7,
19
+ top_p=0.7,
20
+ top_k=50,
21
+ repetition_penalty=1.2,
22
+ context_length=32768,
23
+ max_new_tokens=2048,
24
+ threads=os.cpu_count(),
25
+ stream=True,
26
+ gpu_layers=0
27
+ )
28
+
29
+ tokenizer = AutoTokenizer.from_pretrained(model)
30
+ return (model, tokenizer)
31
+
32
+
33
+ model, tokenizer = load()
34
+
35
+
36
+ def ask(_, system_prompt, pre_prompt, question):
37
+ messages = [
38
+ {'role': 'system', 'content': f"{system_prompt} {pre_prompt}", },
39
+ {'role': 'user', 'content': f"{question}", },
40
+ ]
41
+ logger.debug(f"<< openhermes << {messages}")
42
+ # inputs = tokenizer.apply_chat_template(messages, return_tensors="pt")
43
+ inputs = tokenizer.apply_chat_template(messages, return_tensors="pt")
44
+
45
+ outputs = model.generate(inputs, max_length=200)
46
+ answer = tokenizer.batch_decode(outputs)[0]
47
+ logger.debug(f">> openhermes >> {answer}")
48
+ return answer
requirements.txt CHANGED
@@ -3,6 +3,6 @@ streamlit
3
  ollama
4
  loguru
5
  pytest
6
- transformers
7
  torch
 
8
 
 
3
  ollama
4
  loguru
5
  pytest
 
6
  torch
7
+ spaces
8
 
test_sanitize.py CHANGED
@@ -1,4 +1,4 @@
1
- from app import sanitize, target, Actor
2
 
3
 
4
  def test_sanitize():
 
1
+ from app import sanitize, target
2
 
3
 
4
  def test_sanitize():
transformerschat.py DELETED
@@ -1,38 +0,0 @@
1
- import torch
2
- from ctransformers import AutoModelForCausalLM, AutoTokenizer
3
- from loguru import logger
4
- import spaces
5
-
6
-
7
- def models():
8
- return ["openhermes-2.5-mistral-7b.Q4_K_M.gguf"]
9
-
10
-
11
- def load():
12
- # torch.set_default_device("cuda")
13
- model = AutoModelForCausalLM.from_pretrained("TheBloke/OpenHermes-2.5-Mistral-7B-GGUF", model_file="openhermes-2.5-mistral-7b.Q4_K_M.gguf", model_type="mistral", gpu_layers=50)
14
- # tokenizer = AutoTokenizer.from_pretrained(models()[0], trust_remote_code=True).to("cuda")
15
- return (model, tokenizer)
16
-
17
-
18
- model, tokenizer = load()
19
-
20
-
21
- def ask(_, system_prompt, pre_prompt, question):
22
- messages = [
23
- {
24
- 'role': 'system',
25
- 'content': f"{system_prompt} {pre_prompt}",
26
- },
27
- {
28
- 'role': 'user',
29
- 'content': f"{question}",
30
- },
31
- ]
32
- logger.debug(f"<< openhermes << {question}")
33
- # inputs = tokenizer(question, return_tensors="pt", return_attention_mask=False)
34
- # outputs = model.generate(**inputs, max_length=200)
35
- # answer = tokenizer.batch_decode(outputs)[0]
36
- answer = model(question)
37
- logger.debug(f">> openhermes >> {answer}")
38
- return answer