File size: 5,347 Bytes
afbf242
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
import json
import os
from collections import defaultdict
from random import shuffle
from typing import Optional

import click
from tqdm import tqdm

from config import config
from text.cleaner import clean_text
from common.stdout_wrapper import SAFE_STDOUT
from common.log import logger

preprocess_text_config = config.preprocess_text_config


@click.command()
@click.option(
    "--transcription-path",
    default=preprocess_text_config.transcription_path,
    type=click.Path(exists=True, file_okay=True, dir_okay=False),
)
@click.option("--cleaned-path", default=preprocess_text_config.cleaned_path)
@click.option("--train-path", default=preprocess_text_config.train_path)
@click.option("--val-path", default=preprocess_text_config.val_path)
@click.option(
    "--config-path",
    default=preprocess_text_config.config_path,
    type=click.Path(exists=True, file_okay=True, dir_okay=False),
)
@click.option("--val-per-lang", default=preprocess_text_config.val_per_lang)
@click.option("--max-val-total", default=preprocess_text_config.max_val_total)
@click.option("--clean/--no-clean", default=preprocess_text_config.clean)
@click.option("-y", "--yml_config")
@click.option("--use_jp_extra", is_flag=True)
def preprocess(
    transcription_path: str,
    cleaned_path: Optional[str],
    train_path: str,
    val_path: str,
    config_path: str,
    val_per_lang: int,
    max_val_total: int,
    clean: bool,
    yml_config: str,  # 这个不要删
    use_jp_extra: bool,
):
    if cleaned_path == "" or cleaned_path is None:
        cleaned_path = transcription_path + ".cleaned"

    if clean:
        with open(cleaned_path, "w", encoding="utf-8") as out_file:
            with open(transcription_path, "r", encoding="utf-8") as trans_file:
                for line in tqdm(trans_file, file=SAFE_STDOUT):
                    try:
                        utt, spk, language, text = line.strip().split("|")
                        norm_text, phones, tones, word2ph = clean_text(
                            text, language, use_jp_extra
                        )
                        out_file.write(
                            "{}|{}|{}|{}|{}|{}|{}\n".format(
                                utt,
                                spk,
                                language,
                                norm_text,
                                " ".join(phones),
                                " ".join([str(i) for i in tones]),
                                " ".join([str(i) for i in word2ph]),
                            )
                        )
                    except Exception as e:
                        logger.error(
                            f"An error occurred while generating the training set and validation set, at line:\n{line}\nDetails:\n{e}"
                        )
                        raise

    transcription_path = cleaned_path
    spk_utt_map = defaultdict(list)
    spk_id_map = {}
    current_sid = 0

    with open(transcription_path, "r", encoding="utf-8") as f:
        audioPaths = set()
        countSame = 0
        countNotFound = 0
        for line in f.readlines():
            utt, spk, language, text, phones, tones, word2ph = line.strip().split("|")
            if utt in audioPaths:
                # 过滤数据集错误:相同的音频匹配多个文本,导致后续bert出问题
                logger.warning(f"Same audio matches multiple texts: {line}")
                countSame += 1
                continue
            if not os.path.isfile(utt):
                # 过滤数据集错误:不存在对应音频
                logger.warning(f"Audio not found: {utt}")
                countNotFound += 1
                continue
            audioPaths.add(utt)
            spk_utt_map[language].append(line)
            if spk not in spk_id_map.keys():
                spk_id_map[spk] = current_sid
                current_sid += 1
        logger.info(
            f"Total repeated audios: {countSame}, Total number of audio not found: {countNotFound}"
        )

    train_list = []
    val_list = []

    for spk, utts in spk_utt_map.items():
        shuffle(utts)
        val_list += utts[:val_per_lang]
        train_list += utts[val_per_lang:]

    shuffle(val_list)
    if len(val_list) > max_val_total:
        train_list += val_list[max_val_total:]
        val_list = val_list[:max_val_total]

    with open(train_path, "w", encoding="utf-8") as f:
        for line in train_list:
            f.write(line)

    with open(val_path, "w", encoding="utf-8") as f:
        for line in val_list:
            f.write(line)

    json_config = json.load(open(config_path, encoding="utf-8"))
    json_config["data"]["spk2id"] = spk_id_map
    json_config["data"]["n_speakers"] = len(spk_id_map)
    # 新增写入:写入训练版本、数据集路径
    # json_config["version"] = latest_version
    json_config["data"]["training_files"] = os.path.normpath(train_path).replace(
        "\\", "/"
    )
    json_config["data"]["validation_files"] = os.path.normpath(val_path).replace(
        "\\", "/"
    )
    with open(config_path, "w", encoding="utf-8") as f:
        json.dump(json_config, f, indent=2, ensure_ascii=False)
    logger.info("Training set and validation set generation from texts is complete!")


if __name__ == "__main__":
    preprocess()