File size: 13,905 Bytes
93e1b64
 
a6bd112
 
 
93e1b64
ec6a815
a6bd112
 
4ae75ec
1f35211
 
 
 
 
 
 
 
 
93e1b64
 
1b1c01c
93e1b64
 
 
1b1c01c
93e1b64
 
 
 
1b1c01c
93e1b64
 
4ae75ec
93e1b64
 
 
 
 
 
 
 
 
4ae75ec
93e1b64
4ae75ec
 
 
 
93e1b64
 
 
 
 
 
 
 
 
 
 
4ae75ec
93e1b64
 
 
 
 
 
 
 
 
4ae75ec
93e1b64
4ae75ec
 
 
 
93e1b64
 
 
 
 
 
 
 
 
 
 
 
 
 
4ae75ec
 
 
93e1b64
 
4ae75ec
93e1b64
 
 
 
 
 
 
 
4ae75ec
93e1b64
 
 
 
 
 
 
4ae75ec
1f35211
 
 
 
646d392
 
 
 
 
1f35211
646d392
 
 
e7d7b51
a6bd112
 
 
 
 
 
 
 
93e1b64
4ae75ec
27d40b9
47c6369
a6bd112
7833461
 
 
47c6369
7833461
47c6369
 
7833461
 
 
 
 
 
 
 
47c6369
7833461
47c6369
7833461
a6bd112
1f35211
4ae75ec
 
 
 
 
1f35211
 
 
4ae75ec
1f35211
4ae75ec
 
 
 
 
47c6369
1f35211
4ae75ec
 
 
 
1f35211
a6bd112
 
 
 
 
 
4ae75ec
a6bd112
f26b169
 
 
 
 
 
 
 
a6bd112
f26b169
 
 
 
 
 
27d40b9
f26b169
a6bd112
 
e7d7b51
a6bd112
e7d7b51
a6bd112
 
 
e7d7b51
 
 
a6bd112
 
 
 
 
 
 
e7d7b51
 
a6bd112
 
 
e7d7b51
 
a6bd112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec6a815
 
 
 
a6bd112
 
ec6a815
 
 
 
a6bd112
ec6a815
a6bd112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ae75ec
93e1b64
4ae75ec
 
 
 
 
93e1b64
 
 
 
4ae75ec
93e1b64
 
 
 
 
4ae75ec
 
 
 
93e1b64
4ae75ec
93e1b64
 
1f35211
 
 
 
 
 
 
4ae75ec
 
 
1f35211
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ae75ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# %%
import os
from typing import Any, Dict, List

import pandas as pd
import requests
import streamlit as st
from sentence_transformers import SentenceTransformer
from sqlalchemy import create_engine, text

username = "demo"
password = "demo"
hostname = os.getenv("IRIS_HOSTNAME", "localhost")
port = "1972"
namespace = "USER"
CONNECTION_STRING = f"iris://{username}:{password}@{hostname}:{port}/{namespace}"

engine = create_engine(CONNECTION_STRING)


def get_all_diseases_name(engine) -> List[List[str]]:
    print("Fetching all disease names...")
    with engine.connect() as conn:
        with conn.begin():
            sql = f"""
                    SELECT label FROM Test.EntityEmbeddings
                    """
            result = conn.execute(text(sql))
            data = result.fetchall()

    all_diseases = [row[0] for row in data if row[0] != "nan"]
    return all_diseases


def get_uri_from_name(engine, name: str) -> str:
    with engine.connect() as conn:
        with conn.begin():
            sql = f"""
                    SELECT uri FROM Test.EntityEmbeddings
                    WHERE label = '{name}'
                    """
            result = conn.execute(text(sql))
            data = result.fetchall()
    return data[0][0].split("/")[-1]


def get_most_similar_diseases_from_uri(
    engine, original_disease_uri: str, threshold: float = 0.8
) -> List[str]:
    with engine.connect() as conn:
        with conn.begin():
            sql = f"""
                    SELECT * FROM Test.EntityEmbeddings
                    """
            result = conn.execute(text(sql))
            data = result.fetchall()

    all_diseases = [row[1] for row in data if row[1] != "nan"]
    return all_diseases


def get_uri_from_name(engine, name: str) -> str:
    with engine.connect() as conn:
        with conn.begin():
            sql = f"""
                    SELECT uri FROM Test.EntityEmbeddings
                    WHERE label = '{name}'
                    """
            result = conn.execute(text(sql))
            data = result.fetchall()
    return data[0][0].split("/")[-1]


def get_most_similar_diseases_from_uri(
    engine, original_disease_uri: str, threshold: float = 0.8
) -> List[str]:
    with engine.connect() as conn:
        with conn.begin():
            sql = f"""
                    SELECT TOP 10 e1.uri AS uri1, e2.uri AS uri2, e1.label AS label1, e2.label AS label2,
                    VECTOR_COSINE(e1.embedding, e2.embedding) AS distance
                    FROM Test.EntityEmbeddings e1, Test.EntityEmbeddings e2
                    WHERE e1.uri = 'http://identifiers.org/medgen/{original_disease_uri}'
                    AND VECTOR_COSINE(e1.embedding, e2.embedding) > {threshold}
                    AND e1.uri != e2.uri
                    ORDER BY distance DESC
                    """
            result = conn.execute(text(sql))
            data = result.fetchall()

    similar_diseases = [
        (row[1].split("/")[-1], row[3], row[4]) for row in data if row[3] != "nan"
    ]
    return similar_diseases


def get_clinical_record_info(clinical_record_id: str) -> Dict[str, Any]:
    # Request:
    # curl -X GET "https://clinicaltrials.gov/api/v2/studies/NCT00841061" \
    # -H "accept: text/csv"
    request_url = f"https://clinicaltrials.gov/api/v2/studies/{clinical_record_id}"
    response = requests.get(request_url, headers={"accept": "application/json"})
    return response.json()


def get_clinical_records_by_ids(clinical_record_ids: List[str]) -> List[Dict[str, Any]]:
    clinical_records = []
    for clinical_record_id in clinical_record_ids:
        clinical_record_info = get_clinical_record_info(clinical_record_id)
        clinical_records.append(clinical_record_info)
    return clinical_records


def get_similarities_among_diseases_uris(
    uri_list: List[str],
) -> List[tuple[str, str, float]]:
    uri_list = ", ".join([f"'{uri}'" for uri in uri_list])
    with engine.connect() as conn:
        with conn.begin():
            sql = f"""
                    SELECT e1.uri AS uri1, e2.uri AS uri2, VECTOR_COSINE(e1.embedding, e2.embedding) AS distance
                    FROM Test.EntityEmbeddings e1, Test.EntityEmbeddings e2
                    WHERE e1.uri IN ({uri_list}) AND e2.uri IN ({uri_list}) AND e1.uri != e2.uri
                """
            result = conn.execute(text(sql))
            data = result.fetchall()

    return [
        {
            "uri1": row[0].split("/")[-1],
            "uri2": row[1].split("/")[-1],
            "distance": float(row[2]),
        }
        for row in data
    ]


def augment_the_set_of_diseaces(diseases: List[str]) -> str:
    augmented_diseases = diseases.copy()
    for i in range(10 - len(augmented_diseases)):
        with engine.connect() as conn:
            with conn.begin():
                sql = f"""
                    SELECT TOP 1 e2.uri AS new_disease, (SUM(VECTOR_COSINE(e1.embedding, e2.embedding))/ {len(augmented_diseases)})  AS score
                    FROM Test.EntityEmbeddings e1, Test.EntityEmbeddings e2
                    WHERE e1.uri IN ({','.join([f"'{disease}'" for disease in augmented_diseases])})
                    AND e2.uri NOT IN ({','.join([f"'{disease}'" for disease in augmented_diseases])})
                    AND e2.label != 'nan'
                    GROUP BY e2.label
                    ORDER BY score DESC
                    """

                result = conn.execute(text(sql))
                data = result.fetchall()

        augmented_diseases.append(data[0][0])

    return augmented_diseases


def get_embedding(string: str, encoder) -> List[float]:
    # Embed the string using sentence-transformers
    vector = encoder.encode(string, show_progress_bar=False)
    return vector


def get_diseases_related_to_a_textual_description(
    description: str, encoder
) -> List[str]:
    # Embed the description using sentence-transformers
    description_embedding = get_embedding(description, encoder)
    string_representation = str(description_embedding.tolist())[1:-1]

    with engine.connect() as conn:
        with conn.begin():
            sql = f"""
                    SELECT TOP 10 d.uri, VECTOR_COSINE(d.embedding, TO_VECTOR('{string_representation}', DOUBLE)) AS distance
                    FROM Test.DiseaseDescriptions d
                    ORDER BY distance DESC
                """
            result = conn.execute(text(sql))
            data = result.fetchall()

    return [
        {"uri": row[0], "distance": float(row[1])}
        for row in data
        if float(row[1]) > 0.8
    ]


def get_clinical_trials_related_to_diseases(diseases: List[str], encoder) -> List[str]:
    # Embed the diseases using sentence-transformers
    diseases_string = ", ".join(diseases)
    disease_embedding = get_embedding(diseases_string, encoder)
    string_representation = str(disease_embedding.tolist())[1:-1]

    with engine.connect() as conn:
        with conn.begin():
            sql = f"""
                    SELECT TOP 20 d.nct_id, VECTOR_COSINE(d.embedding, TO_VECTOR('{string_representation}', DOUBLE)) AS distance
                    FROM Test.ClinicalTrials d
                    ORDER BY distance DESC
                """
            result = conn.execute(text(sql))
            data = result.fetchall()

    return [{"nct_id": row[0], "distance": row[1]} for row in data]


def get_similarities_df(diseases: List[Dict[str, Any]]) -> pd.DataFrame:
    # Find out the score of each disease by averaging the cosine similarity of the embeddings of the diseases that include it as uri1 or uri2
    df_diseases_similarities = pd.DataFrame(diseases)
    # Use uri1 as the index, and uri2 as the columns. The values are the distances.
    df_diseases_similarities = df_diseases_similarities.pivot(
        index="uri1", columns="uri2", values="distance"
    )
    # Fill the diagonal with 1.0
    df_diseases_similarities = df_diseases_similarities.fillna(1.0)

    return df_diseases_similarities


def filter_out_less_promising_diseases(info_dicts: List[Dict[str, Any]]) -> List[str]:
    df_diseases_similarities = get_similarities_df(info_dicts)

    # Filter out the diseases that are 0.2 standard deviations below the mean
    mean = df_diseases_similarities.mean().mean()
    std = df_diseases_similarities.mean().std()
    filtered_diseases = df_diseases_similarities.mean()[
        df_diseases_similarities.mean() > mean - 0.2 * std
    ].index.tolist()
    return filtered_diseases, df_diseases_similarities


def get_labels_of_diseases_from_uris(uris: List[str]) -> List[str]:
    with engine.connect() as conn:
        with conn.begin():
            joined_uris = ", ".join([f"'{uri}'" for uri in uris])
            sql = f"""
                    SELECT label FROM Test.EntityEmbeddings
                    WHERE uri IN ({joined_uris})
                """
            result = conn.execute(text(sql))
            data = result.fetchall()

    return [row[0] for row in data]


def to_capitalized_case(string: str) -> str:
    string = string.replace("_", " ")
    if string.isupper():
        return string[0] + string[1:].lower()


def list_to_capitalized_case(strings: List[str]) -> str:
    strings = [to_capitalized_case(s) for s in strings]
    return ", ".join(strings)


def render_trial_details(trial: dict) -> None:
    # TODO: handle key errors for all cases (→ do not render)

    official_title = trial["protocolSection"]["identificationModule"]["officialTitle"]
    st.write(f"##### {official_title}")

    try:
        st.write(trial["protocolSection"]["descriptionModule"]["briefSummary"])
    except KeyError:
        try:
            st.write(
                trial["protocolSection"]["descriptionModule"]["detailedDescription"]
            )
        except KeyError:
            st.error("No description available.")

    st.write("###### Status")
    try:
        status_module = {
            "Status": to_capitalized_case(
                trial["protocolSection"]["statusModule"]["overallStatus"]
            ),
            "Status Date": trial["protocolSection"]["statusModule"][
                "statusVerifiedDate"
            ],
            "Has Results": trial["hasResults"],
        }
        st.table(status_module)
    except KeyError:
        st.info("No status information available.")

    st.write("###### Design")
    try:
        design_module = {
            "Study Type": to_capitalized_case(
                trial["protocolSection"]["designModule"]["studyType"]
            ),
            "Phases": list_to_capitalized_case(
                trial["protocolSection"]["designModule"]["phases"]
            ),
            "Allocation": to_capitalized_case(
                trial["protocolSection"]["designModule"]["designInfo"]["allocation"]
            ),
            "Primary Purpose": to_capitalized_case(
                trial["protocolSection"]["designModule"]["designInfo"]["primaryPurpose"]
            ),
            "Participants": trial["protocolSection"]["designModule"]["enrollmentInfo"][
                "count"
            ],
            "Masking": to_capitalized_case(
                trial["protocolSection"]["designModule"]["designInfo"]["maskingInfo"][
                    "masking"
                ]
            ),
            "Who Masked": list_to_capitalized_case(
                trial["protocolSection"]["designModule"]["designInfo"]["maskingInfo"][
                    "whoMasked"
                ]
            ),
        }
        st.table(design_module)
    except KeyError:
        st.info("No design information available.")

    st.write("###### Interventions")
    try:
        interventions_module = {}
        for intervention in trial["protocolSection"]["armsInterventionsModule"][
            "interventions"
        ]:
            name = intervention["name"]
            desc = intervention["description"]
            interventions_module[name] = desc
        st.table(interventions_module)
    except KeyError:
        st.info("No interventions information available.")

    # Button to go to ClinicalTrials.gov and see the trial. It takes the user to the official page of the trial.
    st.markdown(
        f"See more in [ClinicalTrials.gov](https://clinicaltrials.gov/study/{trial['protocolSection']['identificationModule']['nctId']})"
    )


if __name__ == "__main__":
    username = "demo"
    password = "demo"
    hostname = os.getenv("IRIS_HOSTNAME", "localhost")
    port = "1972"
    namespace = "USER"
    CONNECTION_STRING = f"iris://{username}:{password}@{hostname}:{port}/{namespace}"

    try:
        engine = create_engine(CONNECTION_STRING)
        diseases = get_most_similar_diseases_from_uri("C1843013")
        for disease in diseases:
            print(disease)
    except Exception as e:
        print(e)

    try:
        print(get_uri_from_name(engine, "Alzheimer disease 3"))
    except Exception as e:
        print(e)

    clinical_record_info = get_clinical_records_by_ids(["NCT00841061"])
    print(clinical_record_info)

    textual_description = (
        "A disease that causes memory loss and other cognitive impairments."
    )
    encoder = SentenceTransformer("allenai-specter")
    diseases = get_diseases_related_to_a_textual_description(
        textual_description, encoder
    )
    for disease in diseases:
        print(disease)

    try:
        similarities = get_similarities_among_diseases_uris(
            [
                "http://identifiers.org/medgen/C4553765",
                "http://identifiers.org/medgen/C4553176",
                "http://identifiers.org/medgen/C4024935",
            ]
        )
        for similarity in similarities:
            print(
                f'{similarity[0].split("/")[-1]} and {similarity[1].split("/")[-1]} have a similarity of {similarity[2]}'
            )
    except Exception as e:
        print(e)

# %%