Spaces:
Sleeping
Sleeping
File size: 9,423 Bytes
52ee7a9 0b336c0 52ee7a9 0b336c0 52ee7a9 0b336c0 52ee7a9 0b336c0 52ee7a9 0b336c0 52ee7a9 0b336c0 52ee7a9 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 52ee7a9 1e2e3b8 0b336c0 52ee7a9 0b336c0 52ee7a9 1e2e3b8 0b336c0 52ee7a9 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 52ee7a9 1e2e3b8 0b336c0 52ee7a9 0b336c0 52ee7a9 0b336c0 52ee7a9 0b336c0 52ee7a9 0b336c0 52ee7a9 0b336c0 1e2e3b8 52ee7a9 1e2e3b8 52ee7a9 1e2e3b8 0b336c0 52ee7a9 0b336c0 52ee7a9 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 1e2e3b8 0b336c0 52ee7a9 1e2e3b8 52ee7a9 0b336c0 52ee7a9 0b336c0 1e2e3b8 52ee7a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
import ast
import json
import os
from typing import Any, Dict, List
import langchain
import openai
import pandas as pd
import requests
from dotenv import load_dotenv
from langchain import OpenAI
from langchain.chains.combine_documents.stuff import StuffDocumentsChain
from langchain.chains.qa_with_sources.loading import load_qa_with_sources_chain
from langchain.document_loaders import UnstructuredURLLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain_community.document_loaders import JSONLoader
from langchain_community.document_loaders.csv_loader import CSVLoader
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain_openai import ChatOpenAI
from langchain.chains.llm import LLMChain
from langchain_core.prompts import PromptTemplate
load_dotenv()
# getting the json files
def get_clinical_record_info(clinical_record_id: str) -> Dict[str, Any]:
# Request:
# curl -X GET "https://clinicaltrials.gov/api/v2/studies/NCT00841061" \
# -H "accept: text/csv"
request_url = f"https://clinicaltrials.gov/api/v2/studies/{clinical_record_id}"
response = requests.get(request_url, headers={"accept": "application/json"})
return response.json()
def get_clinical_records_by_ids(clinical_record_ids: List[str]) -> List[Dict[str, Any]]:
clinical_records = []
for clinical_record_id in clinical_record_ids:
clinical_record_info = get_clinical_record_info(clinical_record_id)
clinical_records.append(clinical_record_info)
return clinical_records
def process_json_data_for_llm(data):
# Define the fields you want to keep
fields_to_keep = [
"class_of_organization",
"title",
"overallStatus",
"descriptionModule",
"conditions",
"interventions",
"outcomesModule",
"eligibilityModule",
]
# Iterate through the dictionary and keep only the desired fields
filtered_data = []
for item in data:
try:
organization_name = item["protocolSection"]["identificationModule"][
"organization"
]["fullName"]
except:
organization_name = ""
try:
project_title = item["protocolSection"]["identificationModule"][
"officialTitle"
]
except:
project_title = ""
try:
status = item["protocolSection"]["statusModule"]["overallStatus"]
except:
status = ""
try:
briefDescription = item["protocolSection"]["descriptionModule"][
"briefSummary"
]
except:
briefDescription = ""
try:
detailedDescription = item["protocolSection"]["descriptionModule"][
"detailedDescription"
]
except:
detailedDescription = ""
try:
conditions = item["protocolSection"]["conditionsModule"]["conditions"]
except:
conditions = []
try:
keywords = item["protocolSection"]["conditionsModule"]["keywords"]
except:
keywords = []
try:
interventions = item["protocolSection"]["armsInterventionsModule"][
"interventions"
]
except:
interventions = []
try:
primary_outcomes = item["protocolSection"]["outcomesModule"][
"primaryOutcomes"
]
except:
primary_outcomes = []
try:
secondary_outcomes = item["protocolSection"]["outcomesModule"][
"secondaryOutcomes"
]
except:
secondary_outcomes = []
try:
eligibility = item["protocolSection"]["eligibilityModule"]
except:
eligibility = {}
filtered_item = {
"organization_name": organization_name,
"project_title": project_title,
"status": status,
"briefDescription": briefDescription,
"detailedDescription": detailedDescription,
"keywords": keywords,
"interventions": interventions,
"primary_outcomes": primary_outcomes,
"secondary_outcomes": secondary_outcomes,
"eligibility": eligibility,
}
filtered_data.append(filtered_item)
# for ele in filtered_data:
# print(ele)
def get_short_summary_out_of_json_files(data_json):
prompt_template = """ You are an expert clinician working on the analysis of reports of clinical trials.
# Task
You will be given a set of descriptions of clinical trials. Your job is to come up with a short summary (100-200 words) of the descriptions of the clinical trials. Your users are clinical researchers who are experts in medicine, so you should be technical and specific, including scientific terms. Always be faithful to the original information written in the reports.
To write your summary, you will need to read the following examples, labeled as "Report 1", "Report 2", and so on. Your answer should be a single paragraph (100-200 words) that summarizes the general content of all the reports.
{text}
General summary:"""
prompt = PromptTemplate.from_template(prompt_template)
llm = ChatOpenAI(
temperature=0.4, model_name="gpt-4-turbo", api_key=os.environ["OPENAI_API_KEY"]
)
llm_chain = LLMChain(llm=llm, prompt=prompt)
# Define StuffDocumentsChain
stuff_chain = StuffDocumentsChain(
llm_chain=llm_chain, document_variable_name="text"
)
descriptions = [
(
x["detailedDescription"]
if "detailedDescription" in x and len(x["detailedDescription"]) > 0
else x["briefSummary"]
)
for x in data_json
if "detailedDescription" in x or "briefSummary" in x
]
combined_descriptions = ""
for i, description in enumerate(descriptions):
combined_descriptions += f"Report {i+1}:\n{description}\n"
print(f"Combined descriptions: {combined_descriptions}")
result = stuff_chain.run(combined_descriptions)
print(f"Result: {result}")
return result
def taggingTemplate():
class Classification(BaseModel):
description: str = Field(
description="text description grouping all the clinical trials using briefDescription and detailedDescription keys"
)
project_title: list = Field(
description="Extract the project title of all the clinical trials"
)
status: list = Field(
description="Extract the status of all the clinical trials"
)
# keywords: list = Field(
# description="Extract the most relevant keywords regrouping all the clinical trials"
# )
interventions: list = Field(
description="describe the interventions for each clinical trial using title, name and description"
)
primary_outcomes: list = Field(
description="get the primary outcomes of each clinical trial"
)
# secondary_outcomes: list= Field(description= "get the secondary outcomes of each clinical trial")
# eligibility: list = Field(
# description="get the eligibilityCriteria grouping all the clinical trials"
# )
# healthy_volunteers: list= Field(description= "determine whether the clinical trial requires healthy volunteers")
# minimum_age: list = Field(
# description="get the minimum age from each experiment"
# )
# maximum_age: list = Field(
# description="get the maximum age from each experiment"
# )
# gender: list = Field(description="get the gender from each experiment")
def get_dict(self):
return {
"summary": self.description,
"project_title": self.project_title,
"status": self.status,
"keywords": self.keywords,
"interventions": self.interventions,
"primary_outcomes": self.primary_outcomes,
# "secondary_outcomes": self.secondary_outcomes,
"eligibility": self.eligibility,
# "healthy_volunteers": self.healthy_volunteers,
"minimum_age": self.minimum_age,
"maximum_age": self.maximum_age,
"gender": self.gender,
}
# LLM
llm = ChatOpenAI(
temperature=0.6,
model="gpt-4",
openai_api_key=os.environ["OPENAI_API_KEY"],
).with_structured_output(Classification)
stuff_chain = StuffDocumentsChain(llm_chain=llm, document_variable_name="text")
# tagging_chain = prompt_template | llm
# return tagging_chain
# clinical_record_info = get_clinical_records_by_ids(['NCT00841061', 'NCT03035123', 'NCT02272751', 'NCT03035123', 'NCT03055377'])
# print(clinical_record_info)
# with open('data.json', 'w') as f:
# json.dump(clinical_record_info, f, indent=4)
# tagging_chain = llm_config()
def process_dictionaty_with_llm_to_generate_response(json_contents):
processed_data = process_json_data_for_llm(json_contents)
# res = tagging_chain.invoke({"input": processed_data})
# return res
|