Spaces:
Sleeping
Sleeping
import streamlit as st | |
from streamlit_agraph import agraph, Node, Edge, Config | |
import os | |
from sqlalchemy import create_engine, text | |
import pandas as pd | |
from utils import get_all_diseases_name, get_most_similar_diseases_from_uri, get_uri_from_name, get_diseases_related_to_a_textual_description | |
import json | |
username = 'demo' | |
password = 'demo' | |
hostname = os.getenv('IRIS_HOSTNAME', 'localhost') | |
port = '1972' | |
namespace = 'USER' | |
CONNECTION_STRING = f"iris://{username}:{password}@{hostname}:{port}/{namespace}" | |
engine = create_engine(CONNECTION_STRING) | |
def handle_click_on_analyze_button(): | |
# 1. Embed the textual description that the user entered using the model | |
diseases_related_to_the_user_text = get_diseases_related_to_a_textual_description(description_input) | |
# 2. Get 5 diseases with the highest cosine silimarity from the DB | |
# 3. Get the similarities of the embeddings of those diseases (cosine similarity of the embeddings of the nodes of such diseases) | |
# 4. Potentially filter out the diseases that are not similar enough (e.g. similarity < 0.8) | |
# 5. Augment the set of diseases: add new diseases that are similar to the ones that are already in the set, until we get 10-15 diseases | |
# 6. Query the embeddings of the diseases related to each clinical trial (also in the DB), to get the most similar clinical trials to our set of diseases | |
# 7. Use an LLM to get a summary of the clinical trials, in plain text format | |
# 8. Use an LLM to extract numerical data from the clinical trials (e.g. number of patients, number of deaths, etc.). Get summary statistics out of that. | |
# 9. Show the results to the user: graph of the diseases chosen, summary of the clinical trials, summary statistics of the clinical trials, and list of the details of the clinical trials considered | |
pass | |
st.write("# Klìnic") | |
description_input = st.text_input(label="Enter the disease description 👇") | |
st.write(":red[Here should be the graph]") # TODO remove | |
chart_data = pd.DataFrame( | |
np.random.randn(20, 3), columns=["a", "b", "c"] | |
) # TODO remove | |
st.scatter_chart(chart_data) # TODO remove | |
st.write("## Disease Overview") | |
disease_overview = ":red[lorem ipsum]" # TODO | |
st.write(disease_overview) | |
st.write("## Clinical Trials Details") | |
trials = [] | |
# TODO replace mock data | |
with open("mock_trial.json") as f: | |
d = json.load(f) | |
for i in range(0, 5): | |
trials.append(d) | |
for trial in trials: | |
with st.expander(f"{trial['protocolSection']['identificationModule']['nctId']}"): | |
official_title = trial["protocolSection"]["identificationModule"][ | |
"officialTitle" | |
] | |
st.write(f"##### {official_title}") | |
brief_summary = trial["protocolSection"]["descriptionModule"]["briefSummary"] | |
st.write(brief_summary) | |
status_module = { | |
"Status": trial["protocolSection"]["statusModule"]["overallStatus"], | |
"Status Date": trial["protocolSection"]["statusModule"][ | |
"statusVerifiedDate" | |
], | |
} | |
st.write("###### Status") | |
st.table(status_module) | |
design_module = { | |
"Study Type": trial["protocolSection"]["designModule"]["studyType"], | |
# "Phases": trial["protocolSection"]["designModule"]["phases"], # breaks formatting because it is an array | |
"Allocation": trial["protocolSection"]["designModule"]["designInfo"][ | |
"allocation" | |
], | |
"Participants": trial["protocolSection"]["designModule"]["enrollmentInfo"][ | |
"count" | |
], | |
} | |
st.write("###### Design") | |
st.table(design_module) | |
# TODO more modules? | |