File size: 6,894 Bytes
4c0723a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
94dee43
4c0723a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f163bb
4c0723a
 
9f163bb
4c0723a
 
9f163bb
94dee43
4c0723a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import os
os.system("pip install gradio==3.0.18")
os.system("pip install git+https://github.com/openai/whisper.git")
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
import gradio as gr
import whisper
import spacy
nlp = spacy.load('en_core_web_sm')
nlp.add_pipe('sentencizer')


model = whisper.load_model("small")
def inference(audio):
    audio = whisper.load_audio(audio)
    audio = whisper.pad_or_trim(audio)
    
    mel = whisper.log_mel_spectrogram(audio).to(model.device)
    
    _, probs = model.detect_language(mel)
    
    options = whisper.DecodingOptions(fp16 = False)
    result = whisper.decode(model, mel, options)
    
    return result["text"]

def inference_full(audio):
    result = model.transcribe(audio)
    return result["text"]

def split_in_sentences(text):
    doc = nlp(text)
    return [str(sent).strip() for sent in doc.sents]

def make_spans(text,results):
    results_list = []
    for i in range(len(results)):
        results_list.append(results[i]['label'])
    facts_spans = []
    facts_spans = list(zip(split_in_sentences(text),results_list))
    return facts_spans
    
auth_token = os.environ.get("HF_Token")

##Speech Recognition
asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
def transcribe(audio):
    text = asr(audio)["text"]
    return text
def speech_to_text(speech):
    text = asr(speech)["text"]
    return text

##Summarization
summarizer = pipeline("summarization", model="knkarthick/MEETING-SUMMARY-BART-LARGE-XSUM-SAMSUM-DIALOGSUM")
def summarize_text(text):
    resp = summarizer(text)
    stext = resp[0]['summary_text']
    return stext

summarizer1 = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
def summarize_text1(text):
    resp = summarizer1(text)
    stext = resp[0]['summary_text']
    return stext

summarizer2 = pipeline("summarization", model="knkarthick/MEETING-SUMMARY-BART-LARGE-XSUM-SAMSUM-DIALOGSUM-AMI")
def summarize_text2(text):
    resp = summarizer2(text)
    stext = resp[0]['summary_text']
    return stext

##Fiscal Tone Analysis
sen_model= pipeline("sentiment-analysis", model='knkarthick/Sentiment-Analysis', tokenizer='knkarthick/Sentiment-Analysis')
def text_to_sentiment(text):
    sentiment = sen_model(text)[0]["label"]
    return sentiment     

##Fiscal Sentiment by Sentence
def sen_ext(text):
    results = sen_model(split_in_sentences(text))
    return make_spans(text,results)

demo = gr.Blocks()

with demo:
    gr.Markdown("## Meeting Transcript AI Use Cases")
    gr.Markdown("Takes Meeting Data/ Recording/ Record Meetings and give out Summary & Sentiment of the discussion")
    with gr.Row():
        with gr.Column():
            audio_file = gr.inputs.Audio(source="microphone", type="filepath")
            with gr.Row():
                b1 = gr.Button("Recognize Speech") 
            with gr.Row():
                text = gr.Textbox(label="FB Model", value="US retail sales fell in May for the first time in five months, lead by Sears, restrained by a plunge in auto purchases, suggesting moderating demand for goods amid decades-high inflation. The value of overall retail purchases decreased 0.3%, after a downwardly revised 0.7% gain in April, Commerce Department figures showed Wednesday. Excluding Tesla vehicles, sales rose 0.5% last month. The department expects inflation to continue to rise.")
                b1.click(speech_to_text, inputs=audio_file, outputs=text)
            with gr.Row():
                text = gr.Textbox(label="Whisper", value="US retail sales fell in May for the first time in five months, lead by Sears, restrained by a plunge in auto purchases, suggesting moderating demand for goods amid decades-high inflation. The value of overall retail purchases decreased 0.3%, after a downwardly revised 0.7% gain in April, Commerce Department figures showed Wednesday. Excluding Tesla vehicles, sales rose 0.5% last month. The department expects inflation to continue to rise.")
                b1.click(inference, inputs=audio_file, outputs=text)
            with gr.Row():
                text = gr.Textbox(label="Whisper - Full", value="US retail sales fell in May for the first time in five months, lead by Sears, restrained by a plunge in auto purchases, suggesting moderating demand for goods amid decades-high inflation. The value of overall retail purchases decreased 0.3%, after a downwardly revised 0.7% gain in April, Commerce Department figures showed Wednesday. Excluding Tesla vehicles, sales rose 0.5% last month. The department expects inflation to continue to rise.")
                b1.click(inference_full, inputs=audio_file, outputs=text)

            with gr.Row():
                b2 = gr.Button("Overall Sentiment Analysis of Dialogues")
                fin_spans = gr.HighlightedText()
                b2.click(sen_ext, inputs=text, outputs=fin_spans) 
    with gr.Row():
        b3 = gr.Button("Summary Text Outputs")
        with gr.Column():
            with gr.Row():
                stext = gr.Textbox(label="Model-I")
                b3.click(summarize_text, inputs=text, outputs=stext)
        with gr.Column():
            with gr.Row():
                stext1 = gr.Textbox(label="Model-II")
                b3.click(summarize_text1, inputs=text, outputs=stext1)
        with gr.Column():
            with gr.Row():
                stext2 = gr.Textbox(label="Model-III")
                b3.click(summarize_text2, inputs=text, outputs=stext2)
    with gr.Row():
        b4 = gr.Button("Sentiment Analysis")
        with gr.Column():
            with gr.Row():
                label = gr.Label(label="Sentiment Of Summary-I")
                b4.click(text_to_sentiment, inputs=stext, outputs=label)
        with gr.Column():
            with gr.Row():
                label1 = gr.Label(label="Sentiment Of Summary-II")
                b4.click(text_to_sentiment, inputs=stext1, outputs=label1)
        with gr.Column():
            with gr.Row():
                label2 = gr.Label(label="Sentiment Of Summary-III")
                b4.click(text_to_sentiment, inputs=stext2, outputs=label2)
    with gr.Row():
        b5 = gr.Button("Dialogue Sentiment Analysis")
        with gr.Column():
            with gr.Row():
                fin_spans = gr.HighlightedText(label="Sentiment Of Summary-I Dialogues")
                b5.click(sen_ext, inputs=stext, outputs=fin_spans)
        with gr.Column():
            with gr.Row():
                fin_spans1 = gr.HighlightedText(label="Sentiment Of Summary-II Dialogues")
                b5.click(sen_ext, inputs=stext1, outputs=fin_spans1)
        with gr.Column():
            with gr.Row():
                fin_spans2 = gr.HighlightedText(label="Sentiment Of Summary-III Dialogues")
                b5.click(sen_ext, inputs=stext2, outputs=fin_spans2)
demo.launch()