Spaces:
Running
Running
import gradio as gr | |
with open('materials/introduction.html', 'r', encoding='utf-8') as file: | |
html_description = file.read() | |
with gr.Blocks() as landing_interface: | |
gr.HTML(html_description) | |
with gr.Accordion("How to run this model locally", open=False): | |
gr.Markdown( | |
""" | |
## Installation | |
To use this model, you must install the GLiNER Python library: | |
``` | |
pip install gliner | |
``` | |
## Usage | |
Once you've downloaded the GLiNER library, you can import the GLiNER class. You can then load this model using `GLiNER.from_pretrained` and predict entities with `predict_entities`. | |
""" | |
) | |
gr.Code( | |
''' | |
from gliner import GLiNER | |
model = GLiNER.from_pretrained("knowledgator/gliner-multitask-large-v0.5") | |
text = "Your text here" | |
labels = ["person", "award", "date", "competitions", "teams"] | |
entities = model.predict_entities(text, labels) | |
for entity in entities: | |
print(entity["text"], "=>", entity["label"]) | |
''', | |
language="python", | |
) |