Spaces:
Running
Running
File size: 11,061 Bytes
650c5f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
# ------------------------------------------------------------------------
# Modified from OFA (https://github.com/OFA-Sys/OFA)
# Copyright 2022 The OFA-Sys Team.
# All rights reserved.
# This source code is licensed under the Apache 2.0 license
# found in the LICENSE file in the root directory.
# ------------------------------------------------------------------------
# Modifications Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
import json
from itertools import chain
import os
import torch
import torch.distributed as dist
import numpy as np
from skimage import draw
from PIL import Image
from utils.vis_utils import overlay_predictions
from torchvision.utils import save_image
SMOOTH = 1e-6
def check_length(polygons):
length = 0
for polygon in polygons:
length += len(polygon)
return length
def eval_refcoco(task, generator, models, sample, **kwargs):
def _computeIoU(pred_seg, gd_seg):
I = np.sum(np.logical_and(pred_seg, gd_seg))
U = np.sum(np.logical_or(pred_seg, gd_seg))
return I, U
def _calculate_ap_score(hyps, refs, thresh=0.5):
interacts = torch.cat(
[torch.where(hyps[:, :2] < refs[:, :2], refs[:, :2], hyps[:, :2]),
torch.where(hyps[:, 2:] < refs[:, 2:], hyps[:, 2:], refs[:, 2:])],
dim=1
)
area_predictions = (hyps[:, 2] - hyps[:, 0]) * (hyps[:, 3] - hyps[:, 1])
area_targets = (refs[:, 2] - refs[:, 0]) * (refs[:, 3] - refs[:, 1])
interacts_w = interacts[:, 2] - interacts[:, 0]
interacts_h = interacts[:, 3] - interacts[:, 1]
area_interacts = interacts_w * interacts_h
ious = area_interacts / (area_predictions + area_targets - area_interacts + 1e-6)
return ((ious >= thresh) & (interacts_w > 0) & (interacts_h > 0)).float()
def convert_pts(coeffs):
pts = []
for i in range(len(coeffs) // 2):
pts.append([coeffs[2 * i + 1], coeffs[2 * i]]) # y, x
return np.array(pts, np.int32)
def get_mask_from_codes(codes, img_size):
masks = [np.zeros(img_size)]
for code in codes:
if len(code) > 0:
try:
mask = draw.polygon2mask(img_size, convert_pts(code))
mask = np.array(mask, np.uint8)
except:
mask = np.zeros(img_size)
masks.append(mask)
mask = sum(masks)
mask = mask > 0
return mask.astype(np.uint8)
def _calculate_score(hyps, hyps_det, refs, sample, n_poly_pred, n_poly_gt, vis=True, vis_dir=None):
if vis:
os.makedirs(vis_dir, exist_ok=True)
def compute_jf(pred_mask, gt_mask):
I, U = _computeIoU(pred_mask, gt_mask)
if U == 0:
this_iou = 0.0
else:
this_iou = I * 1.0 / U
prec = (I + SMOOTH) / (pred_mask.sum() + SMOOTH)
rec = (I + SMOOTH) / (gt_mask.sum() + SMOOTH)
this_f = 2 * prec * rec / (prec + rec)
return this_iou, this_f, I, U
IoU = []
F_score = []
cum_I = []
cum_U = []
bboxes = hyps_det
b = len(hyps)
bboxes = torch.tensor(np.stack(bboxes, 0))
bboxes = bboxes.to(sample['w_resize_ratios'].device)
ap_scores = _calculate_ap_score(bboxes.float(), sample['region_coords'].float())
for i in range(b):
hyps_i = hyps[i]
gt_mask = refs[i]
pred_mask = get_mask_from_codes(hyps_i, gt_mask.shape[0:2])
this_iou, this_f, this_I, this_U = compute_jf(pred_mask, gt_mask)
IoU.append(this_iou)
F_score.append(this_f)
cum_I.append(this_I)
cum_U.append(this_U)
if vis:
def pre_caption(caption):
import re
caption = caption.lower().lstrip(",.!?*#:;~").replace('-', ' ').replace('/', ' ').replace(
'<person>',
'person')
caption = re.sub(
r"\s{2,}",
' ',
caption,
)
caption = caption.rstrip('\n')
return caption
gt_box = sample['region_coords'][i].cpu().numpy()
pred_box = bboxes[i].cpu().numpy()
pred_box[::2] *= sample['w_resize_ratios'][i].cpu().numpy()
pred_box[1::2] *= sample['h_resize_ratios'][i].cpu().numpy()
gt_box[::2] *= sample['w_resize_ratios'][i].cpu().numpy()
gt_box[1::2] *= sample['h_resize_ratios'][i].cpu().numpy()
uniq_id = sample["id"][i]
text = sample["text"][i]
text = pre_caption(text)
img = sample["net_input"]['patch_images'][i]
img = (img + 1) / 2
img_ndarray = img.permute(1, 2, 0).cpu().numpy() * 255
img_ndarray = img_ndarray.astype(np.uint8)
gt_overlayed_fn = f"{uniq_id}_{text}_gt_overlayed.png"
pred_overlayed_fn = f"{uniq_id}_{text}_pred_overlayed.png"
pred_overlayed = overlay_predictions(img_ndarray, pred_mask, hyps_i, pred_box)
gt_overlayed = overlay_predictions(img_ndarray, gt_mask, None, gt_box)
pred_overlayed = Image.fromarray(pred_overlayed.astype(np.uint8))
pred_overlayed.save(os.path.join(vis_dir, pred_overlayed_fn))
gt_overlayed = Image.fromarray(gt_overlayed.astype(np.uint8))
gt_overlayed.save(os.path.join(vis_dir, gt_overlayed_fn))
img_fn = f"{uniq_id}_{text}.png"
save_image(img, os.path.join(vis_dir, img_fn))
return torch.tensor(IoU), torch.tensor(F_score), ap_scores, torch.tensor(cum_I), torch.tensor(cum_U)
gen_out = task.inference_step(models, sample)
hyps = []
hyps_det = []
n_poly_pred = []
b = len(gen_out)
poly_len = []
for i in range(b):
gen_out_i = np.array(gen_out[i])
gen_out_i = gen_out_i[gen_out_i != -1] # excluding eos and padding indices
gen_out_i_det = gen_out_i[:4]
gen_out_i_det[::2] *= sample['w'][i].cpu().numpy()
gen_out_i_det[1::2] *= sample['h'][i].cpu().numpy()
polygons_pred = gen_out_i[4:]
polygons_pred = np.append(polygons_pred, [2])
size = len(polygons_pred)
idx_list = [idx for idx, val in
enumerate(polygons_pred) if val == 2] # 2 indicates separator token
polygons_pred *= task.cfg.patch_image_size
# extract the sequence for each polygon
polygons = []
prev_idx = 0
for idx in idx_list:
cur_idx = idx
if prev_idx == cur_idx or prev_idx == size:
pass
else:
polygons.append(polygons_pred[prev_idx: cur_idx])
prev_idx = cur_idx + 1
poly_len.append(check_length(polygons))
n_poly_pred.append(len(polygons))
hyps.append(polygons)
hyps_det.append(gen_out_i_det)
gt = sample['label']
results = [
{"uniq_id": sample_id}
for i, sample_id in enumerate(sample["id"].tolist())
]
iou_scores, f_scores, ap_scores, cum_I, cum_U = _calculate_score(hyps, hyps_det, gt, sample, n_poly_pred,
sample['n_poly'],
vis=kwargs['vis'], vis_dir=kwargs['vis_dir'])
result_dir = kwargs['result_dir']
os.makedirs(result_dir, exist_ok=True)
torch.save({"iou_scores": iou_scores, "ap_scores": ap_scores, "n_poly_pred": n_poly_pred,
"n_poly_gt": sample['n_poly'], "poly_len": poly_len, "uniq_id": sample["id"]},
os.path.join(result_dir, f'{sample["id"][0]}.pt'))
return results, iou_scores, f_scores, ap_scores, cum_I, cum_U
def eval_step(task, generator, models, sample, **kwargs):
if task.cfg._name == 'refcoco':
return eval_refcoco(task, generator, models, sample, **kwargs)
else:
raise NotImplementedError
def merge_results(task, cfg, logger, score_cnt, score_sum, f_score_sum=None, ap_det_score_sum=None, prec_score_sum=None,
cum_I_sum=None, cum_U_sum=None, results=None):
if task.cfg._name == 'image_gen':
if cfg.distributed_training.distributed_world_size > 1:
dist.all_reduce(score_sum.data)
dist.all_reduce(score_cnt.data)
if score_cnt.item() > 0:
logger.info("score_sum: {}, score_cnt: {}, score: {}".format(
score_sum, score_cnt, round(score_sum.item() / score_cnt.item(), 4)
))
else:
gather_results = None
if cfg.distributed_training.distributed_world_size > 1:
gather_results = [None for _ in range(dist.get_world_size())]
dist.all_gather_object(gather_results, results)
dist.all_reduce(score_sum.data)
dist.all_reduce(f_score_sum.data)
dist.all_reduce(cum_I_sum.data)
dist.all_reduce(cum_U_sum.data)
for prec_score in prec_score_sum:
dist.all_reduce(prec_score.data)
dist.all_reduce(ap_det_score_sum.data)
dist.all_reduce(score_cnt.data)
if score_cnt.item() > 0:
prec_list = [.5, .6, .7, .8, .9]
txt = "sample_cnt: {}, mIoU score: {}, oIoU score: {}, ap det score: {}, f score: {}, J&F: {}\n".format(
score_cnt, round(score_sum.item() / score_cnt.item(), 4),
round(cum_I_sum.item() / cum_U_sum.item(), 4),
round(ap_det_score_sum.item() / score_cnt.item(), 4),
round(f_score_sum.item() / score_cnt.item(), 4),
round((f_score_sum.item() + score_sum.item()) / (2 * score_cnt.item()), 4)
)
prec_txt = " ".join(
[f"prec@{prec}: {round(prec_score.item() / score_cnt.item(), 4)}\n" for prec, prec_score in
zip(prec_list, prec_score_sum)])
txt += prec_txt
logger.info(txt)
output_path = os.path.join(cfg.common_eval.results_path, "{}_result.txt".format(cfg.dataset.gen_subset))
os.makedirs(cfg.common_eval.results_path, exist_ok=True)
with open(output_path, 'w') as f:
f.write(txt)
if cfg.distributed_training.distributed_world_size == 1 or dist.get_rank() == 0:
os.makedirs(cfg.common_eval.results_path, exist_ok=True)
output_path = os.path.join(cfg.common_eval.results_path, "{}_predict.json".format(cfg.dataset.gen_subset))
gather_results = list(chain(*gather_results)) if gather_results is not None else results
with open(output_path, 'w') as fw:
json.dump(gather_results, fw)
|