Spaces:
Running
Running
File size: 10,367 Bytes
650c5f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
# PolyFormer: Referring Image Segmentation as Sequential Polygon Generation (CVPR 2023)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/polyformer-referring-image-segmentation-as/referring-expression-segmentation-on-refcocog)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcocog?p=polyformer-referring-image-segmentation-as)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/polyformer-referring-image-segmentation-as/referring-expression-segmentation-on-refcoco)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcoco?p=polyformer-referring-image-segmentation-as)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/polyformer-referring-image-segmentation-as/referring-expression-segmentation-on-refcoco-1)](https://paperswithcode.com/sota/referring-expression-segmentation-on-refcoco-1?p=polyformer-referring-image-segmentation-as)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/polyformer-referring-image-segmentation-as/referring-expression-comprehension-on-refcoco)](https://paperswithcode.com/sota/referring-expression-comprehension-on-refcoco?p=polyformer-referring-image-segmentation-as)
[![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/polyformer-referring-image-segmentation-as/referring-expression-comprehension-on-refcoco-1)](https://paperswithcode.com/sota/referring-expression-comprehension-on-refcoco-1?p=polyformer-referring-image-segmentation-as)
\[[Project Page](https://polyformer.github.io/)\] \[[Paper](https://arxiv.org/abs/2302.07387)\]
by [Jiang Liu*](https://joellliu.github.io/), [Hui Ding*](http://www.huiding.org/), [Zhaowei Cai](https://zhaoweicai.github.io/), [Yuting Zhang](https://scholar.google.com/citations?user=9UfZJskAAAAJ&hl=en), [Ravi Kumar Satzoda](https://scholar.google.com.sg/citations?user=4ngycwIAAAAJ&hl=en), [Vijay Mahadevan](https://scholar.google.com/citations?user=n9fRgvkAAAAJ&hl=en), [R. Manmatha](https://ciir.cs.umass.edu/~manmatha/).
## :notes: Introduction
![github_figure](pipeline.gif)
PolyFormer is a unified model for referring image segmentation (polygon vertex sequence) and referring expression comprehension (bounding box corner points). The polygons are converted to segmentation masks in the end.
**Contributions:**
* State-of-the-art results on referring image segmentation and referring expression comprehension on 6 datasets;
* A unified framework for referring image segmentation (RIS) and referring expression comprehension (REC) by formulating them as a sequence-to-sequence (seq2seq) prediction problem;
* A regression-based decoder for accurate coordinate prediction, which outputs continuous 2D coordinates directly without quantization error..
## Getting Started
### Installation
```bash
conda create -n polyformer python=3.7.4
conda activate polyformer
python -m pip install -r requirements.txt
```
Note: if you are getting import errors from `fairseq`, try the following:
```bash
python -m pip install pip==21.2.4
pip uninstall fairseq
pip install -r requirements.txt
```
## Datasets
### Prepare Pretraining Data
1. Create the dataset folders
```bash
mkdir datasets
mkdir datasets/images
mkdir datasets/annotations
```
2. Download the *2014 Train images [83K/13GB]* from [COCO](https://cocodataset.org/#download),
original [Flickr30K images](http://shannon.cs.illinois.edu/DenotationGraph/),
[ReferItGame images](https://drive.google.com/file/d/1R6Tm7tQTHCil6A_eOhjudK3rgaBxkD2t/view?usp=sharing),
and [Visual Genome images](http://visualgenome.org/api/v0/api_home.html), and extract them to `datasets/images`.
3. Download the annotation file for pretraining datasets [instances.json](https://drive.google.com/drive/folders/1O4hzL8_s3aUsnj_JZnM3CwANd7TejcJO)
provided by [SeqTR](https://github.com/sean-zhuh/SeqTR) and store it in `datasets/annotations`.
The workspace directory should be organized like this:
```
PolyFormer/
βββ datasets/
βΒ Β βββ images
βΒ Β βΒ Β Β βββ flickr30k/*.jpg
βΒ Β βΒ Β Β βββ mscoco/
βΒ Β β βΒ βββ train2014/*.jpg
βΒ Β βΒ Β Β βββ saiaprtc12/*.jpg
βΒ Β βΒ Β Β βββ visual-genome/*.jpg
βΒ Β βββ annotations
βΒ Β Β Β Β βββ instances.json
βββ ...
```
4. Generate the tsv files for pretraining
```bash
python data/create_pretraining_data.py
```
### Prepare Finetuning Data
1. Follow the instructions in the `./refer` directory to set up subdirectories
and download annotations.
This directory is based on the [refer](https://github.com/lichengunc/refer) API.
2. Generate the tsv files for finetuning
```bash
python data/create_finetuning_data.py
```
## Pretraining
1. Create the checkpoints folder
```bash
mkdir weights
```
2. Download pretrain weights of [Swin-base](https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_base_patch4_window12_384_22k.pth),
[Swin-large](https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_large_patch4_window12_384_22k.pth),
[BERT-base](https://cdn.huggingface.co/bert-base-uncased-pytorch_model.bin)
and put the weight files in `./pretrained_weights`.
These weights are needed for training to initialize the model.
3. Run the pretraining scripts for model pretraining on the referring expression comprehension task:
```bash
cd run_scripts/pretrain
bash pretrain_polyformer_b.sh # for pretraining PolyFormer-B model
bash pretrain_polyformer_l.sh # for pretraining PolyFormer-L model
```
## Finetuning
Run the finetuning scripts for model pretraining on the referring image segmentation and referring expression comprehension tasks:
```bash
cd run_scripts/finetune
bash train_polyformer_b.sh # for finetuning PolyFormer-B model
bash train_polyformer_l.sh # for finetuning PolyFormer-L model
```
Please make sure to link the pretrain weight paths (Line 20) in the finetuning scripts to the best pretraining checkpoints.
## Evaluation
Run the evaluation scripts for evaluating on the referring image segmentation and referring expression comprehension tasks:
```bash
cd run_scripts/evaluation
# for evaluating PolyFormer-B model
bash evaluate_polyformer_b_refcoco.sh
bash evaluate_polyformer_b_refcoco+.sh
bash evaluate_polyformer_b_refcocog.sh
# for evaluating PolyFormer-L model
bash evaluate_polyformer_l_refcoco.sh
bash evaluate_polyformer_l_refcoco+.sh
bash evaluate_polyformer_l_refcocog.sh
```
## Model Zoo
Download the model weights to `./weights` if you want to use our trained models for finetuning and evaluation.
| | Refcoco val| | | Refcoco testA| | | Refcoco testB| ||
|-------------------------------------------------------------------------------------------------------|------|------|---------|------|-------|------|-----|------|------|
| Model | oIoU | mIoU | [email protected] | oIoU | mIoU |[email protected] | oIoU | mIoU |[email protected] |
| [PolyFormer-B](https://drive.google.com/file/d/1K0y-WBO6cL7gBzNnJaHAeNu3pgq4DbJ9/view?usp=share_link) | 74.82| 75.96 | 89.73 |76.64| 77.09 | 91.73| 71.06| 73.22 | 86.03 |
| [PolyFormer-L](https://drive.google.com/file/d/15P6m5RI6HAQE2QXQXMAjw_oBsaPii7b3/view?usp=share_link) | 75.96| 76.94 | 90.38 |78.29| 78.49 | 92.89| 73.25| 74.83 | 87.16|
| [test_demo.py](..%2F..%2FDownloads%2Ftest_demo.py) | Refcoco val| | | Refcoco testA| | | Refcoco testB| ||
|--------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|
| Model | oIoU | mIoU |[email protected]| oIoU | mIoU |[email protected] | oIoU | mIoU |[email protected] |
| [PolyFormer-B ](https://drive.google.com/file/d/12_ylFhsbqGySxDqgeEByn8nKoJtT2n2w/view?usp=share_link) | 67.64| 70.65 | 83.73 | 72.89| 74.51 | 88.60 | 59.33| 64.64 | 76.38 | 67.76| 69.36 |
| [PolyFormer-L](https://drive.google.com/file/d/1lUCv7dUPctEz4vEpPr7aI8A8ZmfYCB8y/view?usp=share_link) | 69.33| 72.15 | 84.98 | 74.56| 75.71 | 89.77 | 61.87| 66.73 | 77.97 | 69.20| 71.15 |
| | Refcocog val| || | Refcocog test| |
|-------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|
| Model | oIoU | mIoU |[email protected] | oIoU | mIoU |[email protected] |
| [PolyFormer-B](https://drive.google.com/file/d/12_ylFhsbqGySxDqgeEByn8nKoJtT2n2w/view?usp=share_link) | 67.76| 69.36 | 84.46| 69.05| 69.88 | 84.96 |
| [PolyFormer-L](https://drive.google.com/file/d/1lUCv7dUPctEz4vEpPr7aI8A8ZmfYCB8y/view?usp=share_link) | 69.20| 71.15 | 85.83 | 70.19| 71.17 | 85.91|
* Pretrained weights:
* [PolyFormer-B](https://drive.google.com/file/d/1sAzfChYDdHdaeatB2K14lrJjG4uiXAol/view?usp=share_link)
* [PolyFormer-L](https://drive.google.com/file/d/1knRxgM1lmEkuZZ-cOm_fmwKP1H0bJGU9/view?usp=share_link)
# Acknowlegement
This codebase is developed based on [OFA](https://github.com/OFA-Sys/OFA).
Other related codebases include:
* [Fairseq](https://github.com/pytorch/fairseq)
* [refer](https://github.com/lichengunc/refer)
* [LAVT-RIS](https://github.com/yz93/LAVT-RIS/)
* [SeqTR](https://github.com/sean-zhuh/SeqTR)
# Citation
Please cite our paper if you find this codebase helpful :)
```
@inproceedings{liu2023polyformer,
title={PolyFormer: Referring Image Segmentation as Sequential Polygon Generation},
author={Liu, Jiang and Ding, Hui and Cai, Zhaowei and Zhang, Yuting and Satzoda, Ravi Kumar and Mahadevan, Vijay and Manmatha, R},
booktitle={CVPR},
year={2023}
}
```
## Security
See [CONTRIBUTING](CONTRIBUTING.md#security-issue-notifications) for more information.
## License
This project is licensed under the Apache-2.0 License.
|