File size: 29,517 Bytes
650c5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import argparse
import tempfile
import unittest
import math
import numpy as np


import tests.utils as test_utils
import torch
from fairseq import search
from fairseq.data.dictionary import Dictionary
from fairseq.models.transformer import TransformerModel
from fairseq.sequence_generator import EnsembleModel, SequenceGenerator
from fairseq.ngram_repeat_block import NGramRepeatBlock
from fairseq.tasks.fairseq_task import LegacyFairseqTask


DEFAULT_TEST_VOCAB_SIZE = 100


class DummyTask(LegacyFairseqTask):
    def __init__(self, args):
        super().__init__(args)
        self.dictionary = get_dummy_dictionary()
        if getattr(self.args, "ctc", False):
            self.dictionary.add_symbol("<ctc_blank>")
        self.src_dict = self.dictionary
        self.tgt_dict = self.dictionary

    @property
    def source_dictionary(self):
        return self.src_dict

    @property
    def target_dictionary(self):
        return self.dictionary


def get_dummy_dictionary(vocab_size=DEFAULT_TEST_VOCAB_SIZE):
    dummy_dict = Dictionary()
    # add dummy symbol to satisfy vocab size
    for id, _ in enumerate(range(vocab_size)):
        dummy_dict.add_symbol("{}".format(id), n=1000)
    return dummy_dict


def get_dummy_task_and_parser():
    """
    to build a fariseq model, we need some dummy parse and task. This function
    is used to create dummy task and parser to faciliate model/criterion test

    Note: we use FbSpeechRecognitionTask as the dummy task. You may want
    to use other task by providing another function
    """
    parser = argparse.ArgumentParser(
        description="test_dummy_s2s_task", argument_default=argparse.SUPPRESS
    )
    DummyTask.add_args(parser)
    args = parser.parse_args([])
    task = DummyTask.setup_task(args)
    return task, parser


class TestJitSequenceGeneratorBase(unittest.TestCase):
    def setUp(self):
        self.task, self.parser = get_dummy_task_and_parser()
        eos = self.task.tgt_dict.eos()
        src_tokens = torch.randint(3, 50, (2, 10)).long()
        src_tokens = torch.cat((src_tokens, torch.LongTensor([[eos], [eos]])), -1)
        src_lengths = torch.LongTensor([2, 10])
        self.sample = {
            "net_input": {"src_tokens": src_tokens, "src_lengths": src_lengths}
        }
        TransformerModel.add_args(self.parser)
        args = self.parser.parse_args([])
        args.encoder_layers = 2
        args.decoder_layers = 1
        self.transformer_model = TransformerModel.build_model(args, self.task)

    def assertOutputEqual(self, hypo, pos_probs):
        pos_scores = torch.FloatTensor(pos_probs).log()
        self.assertTensorSizeEqual(hypo["positional_scores"], pos_scores)
        self.assertTensorSizeEqual(pos_scores.numel(), hypo["tokens"].numel())

    def assertTensorSizeEqual(self, t1, t2):
        self.assertEqual(t1.size(), t2.size(), "size mismatch")

    def assertAlmostEqual(self, t1, t2):
        self.assertEqual(t1.size(), t2.size(), "size mismatch")
        self.assertLess((t1 - t2).abs().max(), 1e-4)

    def assertTensorEqual(self, t1, t2):
        self.assertEqual(t1.size(), t2.size(), "size mismatch")
        self.assertEqual(t1.ne(t2).long().sum(), 0)

    def assertHypoEqual(self, h1, h2):
        "Check two hypos are equal"
        self.assertTensorEqual(h1["tokens"], h2["tokens"])
        self.assertAlmostEqual(h1["positional_scores"], h2["positional_scores"])
        self.assertLess(abs(h1["score"] - h2["score"]), 1e-6)
        self.assertAlmostEqual(h1["attention"], h2["attention"])

    def _test_save_and_load(self, scripted_module):
        with tempfile.NamedTemporaryFile() as f:
            scripted_module.save(f.name)
            torch.jit.load(f.name)


JIT_MSG = "Targeting OSS scriptability for the 1.6 release"


@unittest.skipIf(torch.__version__ < "1.6.0", JIT_MSG)
class TestJitSequenceGenerator(TestJitSequenceGeneratorBase):
    def test_export_transformer(self):
        model = self.transformer_model
        torch.jit.script(model)

    def test_ensemble_sequence_generator(self):
        model = self.transformer_model
        generator = SequenceGenerator(
            [model],
            self.task.tgt_dict,
            beam_size=2,
            no_repeat_ngram_size=2,
            max_len_b=10,
        )
        scripted_model = torch.jit.script(generator)
        self._test_save_and_load(scripted_model)

    def test_export_ensemble_model(self):
        model = self.transformer_model
        ensemble_models = EnsembleModel([model])
        torch.jit.script(ensemble_models)


class TestExportSearch(unittest.TestCase):
    def setUp(self):
        task, _ = get_dummy_task_and_parser()
        self.tgt_dict = task.tgt_dict
        self.min_top1_prob = 0.4

    def test_export_diverse_bs(self):
        search_strategy = search.DiverseBeamSearch(
            self.tgt_dict, num_groups=2, diversity_strength=0.0
        )
        torch.jit.script(search_strategy)

    def test_export_sampling(self):
        low_sampling_topp = self.min_top1_prob / 2.0
        search_strategy = search.Sampling(
            self.tgt_dict, sampling_topp=low_sampling_topp
        )
        torch.jit.script(search_strategy)

    def test_export_diverse_siblings_search(self):
        search_strategy = search.DiverseSiblingsSearch(
            self.tgt_dict, diversity_rate=0.5
        )
        torch.jit.script(search_strategy)


class TestSequenceGeneratorBase(unittest.TestCase):
    def assertHypoTokens(self, hypo, tokens):
        self.assertTensorEqual(hypo["tokens"], torch.LongTensor(tokens))

    def assertHypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.0):
        pos_scores = torch.FloatTensor(pos_probs).log()
        self.assertAlmostEqual(hypo["positional_scores"], pos_scores)
        self.assertEqual(pos_scores.numel(), hypo["tokens"].numel())
        score = pos_scores.sum()
        if normalized:
            score /= pos_scores.numel() ** lenpen
        self.assertLess(abs(score - hypo["score"]), 1e-6)

    def assertAlmostEqual(self, t1, t2):
        self.assertEqual(t1.size(), t2.size(), "size mismatch")
        self.assertLess((t1 - t2).abs().max(), 1e-4)

    def assertTensorEqual(self, t1, t2):
        self.assertEqual(t1.size(), t2.size(), "size mismatch")
        self.assertEqual(t1.ne(t2).long().sum(), 0)


class TestSequenceGenerator(TestSequenceGeneratorBase):
    def setUp(self):
        (
            self.tgt_dict,
            self.w1,
            self.w2,
            src_tokens,
            src_lengths,
            self.model,
        ) = test_utils.sequence_generator_setup()
        self.sample = {
            "net_input": {"src_tokens": src_tokens, "src_lengths": src_lengths}
        }

    def test_with_normalization(self):
        generator = SequenceGenerator([self.model], self.tgt_dict, beam_size=2)
        hypos = generator.forward(self.sample)
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6])

    def test_without_normalization(self):
        # Sentence 1: unchanged from the normalized case
        # Sentence 2: beams swap order
        generator = SequenceGenerator(
            [self.model], self.tgt_dict, beam_size=2, normalize_scores=False
        )
        hypos = generator.forward(self.sample)
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0], normalized=False)
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], normalized=False)
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], normalized=False)
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], normalized=False)

    def test_with_lenpen_favoring_short_hypos(self):
        lenpen = 0.6
        generator = SequenceGenerator(
            [self.model], self.tgt_dict, beam_size=2, len_penalty=lenpen
        )
        hypos = generator.forward(self.sample)
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0], lenpen=lenpen)
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.9, 0.9, 1.0], lenpen=lenpen)
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6], lenpen=lenpen)
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.4, 1.0], lenpen=lenpen)

    def test_with_lenpen_favoring_long_hypos(self):
        lenpen = 5.0
        generator = SequenceGenerator(
            [self.model], self.tgt_dict, beam_size=2, len_penalty=lenpen
        )
        hypos = generator.forward(self.sample)
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w2, w1, w2, eos])
        self.assertHypoScore(hypos[0][0], [0.1, 0.9, 0.9, 1.0], lenpen=lenpen)
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w1, eos])
        self.assertHypoScore(hypos[0][1], [0.9, 1.0], lenpen=lenpen)
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, w1, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.4, 1.0], lenpen=lenpen)
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.6], lenpen=lenpen)

    def test_maxlen(self):
        generator = SequenceGenerator(
            [self.model], self.tgt_dict, beam_size=2, max_len_b=2
        )
        hypos = generator.forward(self.sample)
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w2, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.1, 0.1, 0.6])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.6])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w2, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.3, 0.9, 0.01])

    def test_encoder_with_different_output_len(self):
        args = self.model.encoder.args
        task = test_utils.TestTranslationTask.setup_task(
            args, self.tgt_dict, self.tgt_dict
        )
        reshaping_model = test_utils.TestReshapingModel.build_model(args, task)
        generator = SequenceGenerator(
            [reshaping_model], self.tgt_dict, beam_size=2, max_len_b=2
        )
        hypos = generator.forward(self.sample)
        for sent in [0, 1]:
            for beam in [0, 1]:
                assert hypos[sent][beam]["attention"] is not None

    def test_generation_with_additional_input(self):
        args = self.model.encoder.args
        task = test_utils.TestTranslationTask.setup_task(
            args, self.tgt_dict, self.tgt_dict
        )
        add_input_model = test_utils.TestAdditionalInputModel.build_model(args, task)
        generator = SequenceGenerator([add_input_model], self.tgt_dict, beam_size=2)
        sample = self.sample.copy()
        sample["net_input"]["fancy_other_input"] = sample["net_input"]["src_tokens"]
        hypos = generator.forward(self.sample)
        eos, w1, w2 = self.tgt_dict.eos(), self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 1.0])


@unittest.skipUnless(torch.cuda.is_available(), "")
class TestRepeatNgramBlocking(TestSequenceGeneratorBase):
    @classmethod
    def setUpClass(cls):
        (
            cls.tgt_dict,
            cls.w1,
            cls.w2,
            src_tokens,
            src_lengths,
            cls.model,
        ) = test_utils.sequence_generator_setup()
        return cls

    def test_finds_repetitive_tokens(self):
        bsz, vocab_size, beam_size, step = 2, 4, 1, 3
        generated_tok = torch.tensor(
            [[2, 2, 2, 2], [3, 3, 3, 3]], dtype=torch.long, device="cuda"
        )
        lprobs = torch.zeros((beam_size * bsz, vocab_size), device="cuda")
        desired_result = lprobs.new_tensor(
            [[0.0, 0.0, -math.inf, 0.0], [0.0, 0.0, 0.0, -math.inf]]
        )

        cuda_ext_result, baseline_result = self._compare_cuda_ext_to_default_implem(
            bsz, beam_size, generated_tok, lprobs, step, 2
        )
        self.assertTensorEqual(cuda_ext_result, desired_result)
        self.assertTensorEqual(baseline_result, desired_result)

    @unittest.skipIf(torch.__version__ < "1.6.0", JIT_MSG)
    def test_jit_no_extension(self):
        bsz, vocab_size, beam_size, step = 2, 4, 1, 3
        generated_tok = torch.tensor(
            [[2, 2, 2, 2], [3, 3, 3, 3]], dtype=torch.long, device="cuda"
        )
        lprobs = torch.zeros((beam_size * bsz, vocab_size), device="cuda")
        blocker = NGramRepeatBlock(2, use_extension=False)
        base_result = blocker(generated_tok, lprobs.clone(), bsz, beam_size, step)
        scripted_blocker = torch.jit.script(blocker)
        jit_result = scripted_blocker(
            generated_tok, lprobs.clone(), bsz, beam_size, step
        )
        self.assertTensorEqual(base_result, jit_result)

    def test_ngram_blocking_same_as_default_implem(self):
        """Test that cuda extension returns same things as default impl in many settings."""
        vocab_size = 4
        step = 6
        for _ in range(2):
            block_param = np.random.choice([1, 2, 3, 4])
            batch_size = np.random.randint(1, 8)
            beam_size = np.random.choice([1, 2, 4, 8])
            lprobs = torch.zeros((beam_size * batch_size, vocab_size), device="cuda")

            generated_tok = torch.tensor(
                np.random.randint(
                    0, vocab_size, size=(batch_size * beam_size, step + 1)
                ),
                device="cuda",
                dtype=torch.long,
            )
            self._compare_cuda_ext_to_default_implem(
                batch_size,
                beam_size,
                generated_tok,
                lprobs,
                step,
                block_param,
            )

    def _compare_cuda_ext_to_default_implem(
        self, bsz, beam_size, generated_tok, lprobs, step, block_param
    ):
        """Assert that cuda extension and default implem return the same thing."""
        blocker = NGramRepeatBlock(block_param)
        assert blocker.use_extension, "Extension not compiled"
        cuda_ext_result = blocker(
            generated_tok,
            lprobs.clone(),
            bsz,
            beam_size,
            step,
        )
        blocker.use_extension = False
        baseline_result = blocker(
            generated_tok,
            lprobs.clone(),
            bsz,
            beam_size,
            step,
        )
        self.assertTensorEqual(cuda_ext_result, baseline_result)
        blocker.use_extension = True
        return cuda_ext_result, baseline_result


class TestDiverseBeamSearch(TestSequenceGeneratorBase):
    def setUp(self):
        # construct dummy dictionary
        d = test_utils.dummy_dictionary(vocab_size=2)
        self.assertEqual(d.pad(), 1)
        self.assertEqual(d.eos(), 2)
        self.assertEqual(d.unk(), 3)
        self.eos = d.eos()
        self.w1 = 4
        self.w2 = 5

        # construct source data
        self.src_tokens = torch.LongTensor(
            [
                [self.w1, self.w2, self.eos],
                [self.w1, self.w2, self.eos],
            ]
        )
        self.src_lengths = torch.LongTensor([2, 2])

        args = argparse.Namespace()
        unk = 0.0
        args.beam_probs = [
            # step 0:
            torch.FloatTensor(
                [
                    # eos      w1   w2
                    # sentence 1:
                    [0.0, unk, 0.9, 0.1],  # beam 1
                    [0.0, unk, 0.9, 0.1],  # beam 2
                    # sentence 2:
                    [0.0, unk, 0.7, 0.3],
                    [0.0, unk, 0.7, 0.3],
                ]
            ),
            # step 1:
            torch.FloatTensor(
                [
                    # eos      w1   w2
                    # sentence 1:
                    [0.0, unk, 0.6, 0.4],
                    [0.0, unk, 0.6, 0.4],
                    # sentence 2:
                    [0.25, unk, 0.35, 0.4],
                    [0.25, unk, 0.35, 0.4],
                ]
            ),
            # step 2:
            torch.FloatTensor(
                [
                    # eos      w1   w2
                    # sentence 1:
                    [1.0, unk, 0.0, 0.0],
                    [1.0, unk, 0.0, 0.0],
                    # sentence 2:
                    [0.9, unk, 0.1, 0.0],
                    [0.9, unk, 0.1, 0.0],
                ]
            ),
        ]

        task = test_utils.TestTranslationTask.setup_task(args, d, d)
        self.model = task.build_model(args)
        self.tgt_dict = task.target_dictionary

    def test_diverse_beam_search(self):
        search_strategy = search.DiverseBeamSearch(
            self.tgt_dict, num_groups=2, diversity_strength=0.0
        )
        generator = SequenceGenerator(
            [self.model],
            self.tgt_dict,
            beam_size=2,
            search_strategy=search_strategy,
        )
        sample = {
            "net_input": {
                "src_tokens": self.src_tokens,
                "src_lengths": self.src_lengths,
            }
        }
        hypos = generator.forward(sample)
        eos, w1, w2 = self.eos, self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 0.6, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w1, w1, eos])
        self.assertHypoScore(hypos[0][1], [0.9, 0.6, 1.0])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.9])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w2, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.4, 0.9])


class TestDiverseSiblingsSearch(TestDiverseBeamSearch):
    def assertHypoScore(
        self, hypo, pos_probs, sibling_rank, diversity_rate, normalized=True, lenpen=1.0
    ):
        pos_scores = torch.FloatTensor(pos_probs).log()
        pos_scores.sub_(torch.Tensor(sibling_rank) * diversity_rate)
        self.assertAlmostEqual(hypo["positional_scores"], pos_scores)
        self.assertEqual(pos_scores.numel(), hypo["tokens"].numel())
        score = pos_scores.sum()
        if normalized:
            score /= pos_scores.numel() ** lenpen
        self.assertLess(abs(score - hypo["score"]), 1e-6)

    def test_diverse_beam_search(self):
        search_strategy = search.DiverseSiblingsSearch(
            self.tgt_dict, diversity_rate=0.5
        )
        generator = SequenceGenerator(
            [self.model], self.tgt_dict, beam_size=2, search_strategy=search_strategy
        )
        sample = {
            "net_input": {
                "src_tokens": self.src_tokens,
                "src_lengths": self.src_lengths,
            }
        }
        hypos = generator.forward(sample)
        eos, w1, w2 = self.eos, self.w1, self.w2
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, w1, eos])
        self.assertHypoScore(hypos[0][0], [0.9, 0.6, 1.0], [0, 1, 1], 0.5)
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w1, w2, eos])
        self.assertHypoScore(hypos[0][1], [0.9, 0.4, 1.0], [0, 2, 1], 0.5)
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w2, eos])
        self.assertHypoScore(hypos[1][0], [0.7, 0.4, 0.9], [0, 1, 1], 0.5)
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w1, eos])
        self.assertHypoScore(hypos[1][1], [0.7, 0.35, 0.9], [0, 2, 1], 0.5)


class TestPrefixBeamSearch(TestSequenceGeneratorBase):
    def setUp(self):
        # construct dummy dictionary
        vocab_size = 10
        d = test_utils.dummy_dictionary(vocab_size=vocab_size)
        self.assertEqual(d.pad(), 1)
        self.assertEqual(d.eos(), 2)
        self.assertEqual(d.unk(), 3)
        self.eos = d.eos()
        self.w1 = 4
        self.w2 = 5
        self.beam_size = 3

        # construct prefix data
        self.tokens = torch.LongTensor(
            [
                [self.w1, self.w2, self.eos],
            ]
        )
        self.token_lengths = torch.LongTensor([2])

        args = argparse.Namespace()
        unk = 0.0
        args.beam_probs = [
            # prefix step 0:
            torch.FloatTensor(
                [
                    # eos      
                    [0.0, unk] + [1.0 / vocab_size] * vocab_size  # beam 1
                ] * self.beam_size
            ),
        ] * vocab_size

        task = test_utils.TestTranslationTask.setup_task(args, d, d)
        self.model = task.build_model(args)
        self.tgt_dict = task.target_dictionary

    def test_prefix_beam_search(self):
        search_strategy = search.BeamSearch(self.tgt_dict)
        generator = SequenceGenerator(
            [self.model],
            self.tgt_dict,
            beam_size=self.beam_size,
            search_strategy=search_strategy,
        )
        sample = {
            "net_input": {
                "src_tokens": self.tokens,
                "src_lengths": self.token_lengths,
            }
        }
        # make sure test sample doesn't break any assertion
        generator.forward(sample, prefix_tokens=self.tokens[:, :-1])

class TestTopPSamplingSearch(TestSequenceGeneratorBase):
    def setUp(self):
        # construct dummy dictionary
        d = test_utils.dummy_dictionary(vocab_size=2)
        self.assertEqual(d.pad(), 1)
        self.assertEqual(d.eos(), 2)
        self.assertEqual(d.unk(), 3)
        self.eos = d.eos()
        self.w1 = 4
        self.w2 = 5

        # construct source data
        self.src_tokens = torch.LongTensor(
            [
                [self.w1, self.w2, self.eos],
                [self.w1, self.w2, self.eos],
            ]
        )
        self.src_lengths = torch.LongTensor([2, 2])

        args = argparse.Namespace()
        unk = 0.0
        # The minimal probability of top 2 tokens.
        self.min_top2_prob = 0.75
        # The minimal probability of the top 1 token.
        self.min_top1_prob = 0.4

        w1_prob = self.min_top1_prob
        w2_prob = self.min_top2_prob - self.min_top1_prob
        eos_prob = 1 - self.min_top2_prob

        args.beam_probs = [
            # step 0:
            torch.FloatTensor(
                [
                    # eos      w1   w2
                    [0.0, unk, 1.0, 0.0],
                    [0.0, unk, 1.0, 0.0],
                    [0.0, unk, 1.0, 0.0],
                    [0.0, unk, 1.0, 0.0],
                ]
            ),
            # step 1:
            torch.FloatTensor(
                [
                    # eos           w1       w2
                    [eos_prob, unk, w1_prob, w2_prob],
                    [eos_prob, unk, w1_prob, w2_prob],
                    [eos_prob, unk, w1_prob, w2_prob],
                    [eos_prob, unk, w1_prob, w2_prob],
                ]
            ),
            # step 2:
            torch.FloatTensor(
                [
                    # eos      w1   w2
                    [1.0, unk, 0.0, 0.0],
                    [1.0, unk, 0.0, 0.0],
                    [1.0, unk, 0.0, 0.0],
                    [1.0, unk, 0.0, 0.0],
                ]
            ),
        ]

        task = test_utils.TestTranslationTask.setup_task(args, d, d)
        self.model = task.build_model(args)
        self.tgt_dict = task.target_dictionary

    def test_topp_sampling_search_low_prob(self):
        # Given a prob low enough to top-P sampling, we expect only the top
        # 1 token to be sampled, which always results in the same output.
        low_sampling_topp = self.min_top1_prob / 2.0
        search_strategy = search.Sampling(
            self.tgt_dict, sampling_topp=low_sampling_topp
        )
        generator = SequenceGenerator(
            [self.model], self.tgt_dict, beam_size=2, search_strategy=search_strategy
        )
        sample = {
            "net_input": {
                "src_tokens": self.src_tokens,
                "src_lengths": self.src_lengths,
            }
        }
        hypos = generator.forward(sample)
        eos, w1 = self.eos, self.w1
        # sentence 1, beam 1
        self.assertHypoTokens(hypos[0][0], [w1, w1, eos])
        self.assertHypoScore(hypos[0][0], [1.0, 0.4, 1.0])
        # sentence 1, beam 2
        self.assertHypoTokens(hypos[0][1], [w1, w1, eos])
        self.assertHypoScore(hypos[0][1], [1.0, 0.4, 1.0])
        # sentence 2, beam 1
        self.assertHypoTokens(hypos[1][0], [w1, w1, eos])
        self.assertHypoScore(hypos[1][0], [1.0, 0.4, 1.0])
        # sentence 2, beam 2
        self.assertHypoTokens(hypos[1][1], [w1, w1, eos])
        self.assertHypoScore(hypos[1][1], [1.0, 0.4, 1.0])

    def test_topp_sampling_search_high_prob(self):
        # Given a prob high enough to top-P sampling, any of the top 2
        # tokens could be sampled. This can cause different outputs.
        high_sampling_topp = (self.min_top1_prob + self.min_top2_prob) / 2.0
        search_strategy = search.Sampling(
            self.tgt_dict, sampling_topp=high_sampling_topp
        )
        generator = SequenceGenerator(
            [self.model], self.tgt_dict, beam_size=2, search_strategy=search_strategy
        )
        sample = {
            "net_input": {
                "src_tokens": self.src_tokens,
                "src_lengths": self.src_lengths,
            }
        }
        hypos = generator.forward(sample)
        eos, w1, w2 = self.eos, self.w1, self.w2
        # sentence 1, beam 1
        self.assertTrue(
            self.hypoTokens(hypos[0][0], [w1, w1, eos])
            or self.hypoTokens(hypos[0][0], [w1, w2, eos])
        )
        self.assertTrue(
            self.hypoScore(hypos[0][0], [1.0, 0.4, 1.0])
            or self.hypoScore(hypos[0][0], [1.0, 0.35, 1.0])
        )

        # sentence 1, beam 2
        self.assertTrue(
            self.hypoTokens(hypos[0][1], [w1, w1, eos])
            or self.hypoTokens(hypos[0][1], [w1, w2, eos])
        )
        self.assertTrue(
            self.hypoScore(hypos[0][1], [1.0, 0.4, 1.0])
            or self.hypoScore(hypos[0][1], [1.0, 0.35, 1.0])
        )

        # sentence 2, beam 1
        self.assertTrue(
            self.hypoTokens(hypos[1][0], [w1, w1, eos])
            or self.hypoTokens(hypos[1][0], [w1, w2, eos])
        )
        self.assertTrue(
            self.hypoScore(hypos[1][0], [1.0, 0.4, 1.0])
            or self.hypoScore(hypos[1][0], [1.0, 0.35, 1.0])
        )

        # sentence 2, beam 2
        self.assertTrue(
            self.hypoTokens(hypos[1][1], [w1, w1, eos])
            or self.hypoTokens(hypos[1][1], [w1, w2, eos])
        )
        self.assertTrue(
            self.hypoScore(hypos[1][1], [1.0, 0.4, 1.0])
            or self.hypoScore(hypos[1][1], [1.0, 0.35, 1.0])
        )

    def hypoTokens(self, hypo, tokens):
        return self.tensorEqual(hypo["tokens"], torch.LongTensor(tokens))

    def hypoScore(self, hypo, pos_probs, normalized=True, lenpen=1.0):
        pos_scores = torch.FloatTensor(pos_probs).log()
        if not self.almostEqual(hypo["positional_scores"], pos_scores):
            return False
        if pos_scores.numel() != hypo["tokens"].numel():
            return False
        score = pos_scores.sum()
        if normalized:
            score /= pos_scores.numel() ** lenpen
        return abs(score - hypo["score"]) < 1e-6

    def almostEqual(self, t1, t2):
        return t1.size() == t2.size() and (t1 - t2).abs().max() < 1e-4

    def tensorEqual(self, t1, t2):
        return t1.size() == t2.size() and t1.ne(t2).long().sum() == 0


if __name__ == "__main__":
    unittest.main()