File size: 9,292 Bytes
650c5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import contextlib
import logging
import unittest
from io import StringIO
from unittest.mock import MagicMock, patch

import torch
from fairseq import checkpoint_utils, data
from omegaconf import OmegaConf


def mock_trainer(epoch, num_updates, iterations_in_epoch):
    trainer = MagicMock()
    trainer.load_checkpoint.return_value = {
        "train_iterator": {
            "epoch": epoch,
            "iterations_in_epoch": iterations_in_epoch,
            "shuffle": False,
        },
    }
    trainer.get_num_updates.return_value = num_updates
    return trainer


def mock_dict():
    d = MagicMock()
    d.pad.return_value = 1
    d.eos.return_value = 2
    d.unk.return_value = 3
    return d


def get_trainer_and_epoch_itr(epoch, epoch_size, num_updates, iterations_in_epoch):
    tokens = torch.LongTensor(list(range(epoch_size))).view(1, -1)
    tokens_ds = data.TokenBlockDataset(
        tokens,
        sizes=[tokens.size(-1)],
        block_size=1,
        pad=0,
        eos=1,
        include_targets=False,
    )
    trainer = mock_trainer(epoch, num_updates, iterations_in_epoch)
    dataset = data.LanguagePairDataset(
        tokens_ds, tokens_ds.sizes, mock_dict(), shuffle=False
    )
    epoch_itr = data.EpochBatchIterator(
        dataset=dataset,
        collate_fn=dataset.collater,
        batch_sampler=[[i] for i in range(epoch_size)],
    )
    return trainer, epoch_itr


def get_mock_cfg(finetune_from_model):
    cfg_mock = OmegaConf.create(
        {
            "checkpoint": {
                "save_dir": None,
                "optimizer_overrides": "{}",
                "reset_dataloader": False,
                "reset_meters": False,
                "reset_optimizer": False,
                "reset_lr_scheduler": False,
                "finetune_from_model": finetune_from_model,
                "model_parallel_size": 1,
                "restore_file": "checkpoint_last.pt",
            },
            "common": {
                "model_parallel_size": 1,
            },
        }
    )
    return cfg_mock


class TestLoadCheckpoint(unittest.TestCase):
    def setUp(self):
        self.cfg_mock = get_mock_cfg(None)
        self.patches = {
            "os.makedirs": MagicMock(),
            "os.path.join": MagicMock(),
            "os.path.isfile": MagicMock(return_value=True),
            "os.path.isabs": MagicMock(return_value=False),
            "fairseq.file_io.PathManager.exists": MagicMock(return_value=False),
        }
        self.applied_patches = [patch(p, d) for p, d in self.patches.items()]
        [p.start() for p in self.applied_patches]
        logging.disable(logging.CRITICAL)

    def tearDown(self):
        patch.stopall()
        logging.disable(logging.NOTSET)

    def test_load_partial_checkpoint(self):
        with contextlib.redirect_stdout(StringIO()):
            trainer, epoch_itr = get_trainer_and_epoch_itr(2, 150, 200, 50)
            trainer.get_train_iterator = MagicMock(return_value=epoch_itr)

            _, epoch_itr = checkpoint_utils.load_checkpoint(
                self.cfg_mock.checkpoint, trainer
            )

            self.assertEqual(epoch_itr.epoch, 2)
            self.assertEqual(epoch_itr.iterations_in_epoch, 50)

            itr = epoch_itr.next_epoch_itr(shuffle=False)
            self.assertEqual(epoch_itr.epoch, 2)
            self.assertEqual(epoch_itr.iterations_in_epoch, 50)

            self.assertEqual(next(itr)["net_input"]["src_tokens"][0].item(), 50)
            self.assertEqual(epoch_itr.iterations_in_epoch, 51)

            for _ in range(150 - 52):
                next(itr)
            self.assertEqual(epoch_itr.iterations_in_epoch, 149)
            self.assertTrue(itr.has_next())
            next(itr)
            self.assertFalse(itr.has_next())

            itr = epoch_itr.next_epoch_itr(shuffle=False)
            self.assertTrue(itr.has_next())
            self.assertEqual(epoch_itr.epoch, 3)
            self.assertEqual(epoch_itr.iterations_in_epoch, 0)

    def test_load_full_checkpoint(self):
        with contextlib.redirect_stdout(StringIO()):
            trainer, epoch_itr = get_trainer_and_epoch_itr(2, 150, 300, 150)
            trainer.get_train_iterator = MagicMock(return_value=epoch_itr)

            _, epoch_itr = checkpoint_utils.load_checkpoint(
                self.cfg_mock.checkpoint, trainer
            )
            itr = epoch_itr.next_epoch_itr(shuffle=False)

            self.assertEqual(epoch_itr.epoch, 3)
            self.assertEqual(epoch_itr.iterations_in_epoch, 0)
            self.assertEqual(next(itr)["net_input"]["src_tokens"][0].item(), 0)

    def test_load_no_checkpoint(self):
        with contextlib.redirect_stdout(StringIO()):
            trainer, epoch_itr = get_trainer_and_epoch_itr(1, 150, 0, 0)
            trainer.get_train_iterator = MagicMock(return_value=epoch_itr)
            self.patches["os.path.isfile"].return_value = False

            _, epoch_itr = checkpoint_utils.load_checkpoint(
                self.cfg_mock.checkpoint, trainer
            )
            itr = epoch_itr.next_epoch_itr(shuffle=False)

            self.assertEqual(epoch_itr.epoch, 1)
            self.assertEqual(epoch_itr.iterations_in_epoch, 0)
            self.assertEqual(next(itr)["net_input"]["src_tokens"][0].item(), 0)

    def test_finetune_from_model_args_conflict(self):
        with contextlib.redirect_stdout(StringIO()):
            trainer, epoch_itr = get_trainer_and_epoch_itr(1, 150, 0, 0)
            trainer.get_train_iterator = MagicMock(return_value=epoch_itr)

            for arg in [
                "reset_optimizer",
                "reset_lr_scheduler",
                "reset_meters",
                "reset_dataloader",
            ]:
                with self.subTest(arg=arg):
                    cfg_mock = get_mock_cfg("/temp/checkpoint_pretrained.pt")
                    cfg_mock["checkpoint"][arg] = True
                    with self.assertRaises(Exception) as context:
                        _, _ = checkpoint_utils.load_checkpoint(
                            cfg_mock.checkpoint, trainer
                        )

                    self.assertTrue(
                        "--finetune-from-model can not be set together with either --reset-optimizer"
                        " or reset_lr_scheduler or reset_meters or reset_dataloader"
                        in str(context.exception)
                    )

    def test_finetune_from_model(self):
        with contextlib.redirect_stdout(StringIO()):
            trainer, epoch_itr = get_trainer_and_epoch_itr(1, 150, 0, 0)
            trainer.get_train_iterator = MagicMock(return_value=epoch_itr)
            from_model_path = "/temp/checkpoint_pretrained.pt"

            def mock_finetune_exist(path):
                if path == from_model_path:
                    return True
                else:
                    return False

            self.patches[
                "fairseq.file_io.PathManager.exists"
            ].side_effect = mock_finetune_exist
            cfg_mock = get_mock_cfg(from_model_path)
            cfg_mock.checkpoint.restore_file = "checkpoint_last.pt"
            _, _ = checkpoint_utils.load_checkpoint(cfg_mock.checkpoint, trainer)
            (
                checkpoint_path,
                reset_optimizer,
                reset_lr_scheduler,
                optimizer_overrides,
            ) = trainer.load_checkpoint.call_args[0]
            reset_meters = trainer.load_checkpoint.call_args[1]["reset_meters"]
            self.assertTrue(reset_optimizer)
            self.assertTrue(reset_lr_scheduler)
            self.assertTrue(reset_meters)

    def test_finetune_from_model_resume(self):
        with contextlib.redirect_stdout(StringIO()):
            trainer, epoch_itr = get_trainer_and_epoch_itr(1, 150, 0, 0)
            trainer.get_train_iterator = MagicMock(return_value=epoch_itr)
            from_model_path = "/temp/checkpoint_pretrained.pt"

            # launch second time
            # both restore_file=checkpoint_last.pt and finetune_from_model are set
            def mock_finetune_exist(path):
                if path == from_model_path or path.endsWith("checkpoint_last.pt"):
                    return True
                else:
                    return False

            self.patches[
                "fairseq.file_io.PathManager.exists"
            ].side_effect = mock_finetune_exist
            cfg_mock = get_mock_cfg(from_model_path)
            cfg_mock.checkpoint.restore_file = "checkpoint_last.pt"
            _, _ = checkpoint_utils.load_checkpoint(cfg_mock.checkpoint, trainer)
            (
                checkpoint_path,
                reset_optimizer,
                reset_lr_scheduler,
                optimizer_overrides,
            ) = trainer.load_checkpoint.call_args[0]
            reset_meters = trainer.load_checkpoint.call_args[1]["reset_meters"]
            self.assertFalse(reset_optimizer)
            self.assertFalse(reset_lr_scheduler)
            self.assertFalse(reset_meters)


if __name__ == "__main__":
    unittest.main()