File size: 8,865 Bytes
650c5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# ------------------------------------------------------------------------
# Modified from OFA (https://github.com/OFA-Sys/OFA)
# Copyright 2022 The OFA-Sys Team. 
# All rights reserved.
# This source code is licensed under the Apache 2.0 license 
# found in the LICENSE file in the root directory.
# ------------------------------------------------------------------------
# Modifications Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0

"""
PolyFormer
"""
from typing import Optional

import logging

import torch
import torch.nn as nn
from fairseq import utils
from fairseq.models import register_model, register_model_architecture
from fairseq.modules.transformer_sentence_encoder import init_bert_params

from .unify_transformer import TransformerModel

logger = logging.getLogger(__name__)


@register_model("polyformer")
class PolyFormerModel(TransformerModel):
    __jit_unused_properties__ = ["supported_targets"]

    def __init__(self, args, encoder, decoder):
        super().__init__(args, encoder, decoder)

        # We follow BERT's random weight initialization
        self.apply(init_bert_params)

        self.classification_heads = nn.ModuleDict()
        if hasattr(self.encoder, "dictionary"):
            self.eos: int = self.encoder.dictionary.eos()

    @staticmethod
    def add_args(parser):
        super(PolyFormerModel, PolyFormerModel).add_args(parser)
        parser.add_argument(
            "--pooler-dropout",
            type=float,
            metavar="D",
            help="dropout probability in the masked_lm pooler layers",
        )
        parser.add_argument(
            "--pooler-classifier",
            type=str,
            choices=['mlp', 'linear'],
            help="type of pooler classifier",
        )
        parser.add_argument(
            "--pooler-activation-fn",
            choices=utils.get_available_activation_fns(),
            help="activation function to use for pooler layer",
        )
        parser.add_argument(
            "--spectral-norm-classification-head",
            action="store_true",
            help="Apply spectral normalization on the classification head",
        )

    @property
    def supported_targets(self):
        return {"self"}

    def forward(
        self,
        src_tokens,
        src_lengths,
        att_masks,
        prev_output_tokens_11,
        prev_output_tokens_12,
        prev_output_tokens_21,
        prev_output_tokens_22,
        delta_x1,
        delta_y1,
        delta_x2,
        delta_y2,
        patch_images: Optional[torch.Tensor] = None,
        patch_masks: Optional[torch.Tensor] = None,
        code_masks: Optional[torch.Tensor] = None,
        sample_patch_num: Optional[int] = None,
        features_only: bool = False,
        classification_head_name: Optional[str] = None,
        token_embeddings: Optional[torch.Tensor] = None,
        return_all_hiddens: bool = False,
        alignment_layer: Optional[int] = None,
        alignment_heads: Optional[int] = None,
    ):
        if classification_head_name is not None:
            features_only = True

        encoder_out = self.encoder(
            src_tokens,
            src_lengths=src_lengths,
            att_masks=att_masks,
            patch_images=patch_images,
            patch_masks=patch_masks,
            token_embeddings=token_embeddings,
            return_all_hiddens=return_all_hiddens,
            sample_patch_num=sample_patch_num
        )
        x_cls, x_reg, extra = self.decoder(
            prev_output_tokens_11,
            prev_output_tokens_12,
            prev_output_tokens_21,
            prev_output_tokens_22,
            delta_x1,
            delta_y1,
            delta_x2,
            delta_y2,
            code_masks=code_masks,
            encoder_out=encoder_out,
            features_only=features_only,
            alignment_layer=alignment_layer,
            alignment_heads=alignment_heads,
            src_lengths=src_lengths,
            return_all_hiddens=return_all_hiddens,
        )
        return x_cls, x_reg, extra

    def upgrade_state_dict_named(self, state_dict, name):
        pass


@register_model_architecture("polyformer", "polyformer_l")
def polyformer_l_architecture(args):
    args.encoder_embed_path = getattr(args, "encoder_embed_path", None)
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4 * 1024)
    args.encoder_layers = getattr(args, "encoder_layers", 12)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 16)
    args.encoder_normalize_before = getattr(args, "encoder_normalize_before", True)
    args.encoder_learned_pos = getattr(args, "encoder_learned_pos", True)
    args.decoder_embed_path = getattr(args, "decoder_embed_path", None)
    args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim)
    args.decoder_ffn_embed_dim = getattr(
        args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim
    )
    args.decoder_layers = getattr(args, "decoder_layers", 12)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 16)
    args.decoder_normalize_before = getattr(args, "decoder_normalize_before", True)
    args.decoder_learned_pos = getattr(args, "decoder_learned_pos", True)
    args.attention_dropout = getattr(args, "attention_dropout", 0.0)
    args.relu_dropout = getattr(args, "relu_dropout", 0.0)
    args.dropout = getattr(args, "dropout", 0.0)
    args.max_target_positions = getattr(args, "max_target_positions", 1024)
    args.max_source_positions = getattr(args, "max_source_positions", 1024)
    args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None)
    args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0)
    args.share_decoder_input_output_embed = getattr(
        args, "share_decoder_input_output_embed", True
    )
    args.share_all_embeddings = getattr(args, "share_all_embeddings", True)

    args.decoder_output_dim = getattr(
        args, "decoder_output_dim", args.decoder_embed_dim
    )
    args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim)

    args.no_scale_embedding = getattr(args, "no_scale_embedding", True)
    args.layernorm_embedding = getattr(args, "layernorm_embedding", True)

    args.activation_fn = getattr(args, "activation_fn", "gelu")
    args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh")
    args.pooler_dropout = getattr(args, "pooler_dropout", 0.0)
    args.pooler_classifier = getattr(args, "pooler_classifier", "mlp")

    args.resnet_drop_path_rate = getattr(args, "resnet_drop_path_rate", 0.0)
    args.encoder_drop_path_rate = getattr(args, "encoder_drop_path_rate", 0.0)
    args.decoder_drop_path_rate = getattr(args, "decoder_drop_path_rate", 0.0)

    args.vis_encoder_type = getattr(args, "vis_encoder_type", "swin-large")
    args.out_index = getattr(args, "out_index", 3)
    args.token_bucket_size = getattr(args, "token_bucket_size", 256)
    args.image_bucket_size = getattr(args, "image_bucket_size", 42)

    args.freeze_encoder_embedding = getattr(args, "freeze_encoder_embedding", False)
    args.freeze_decoder_embedding = getattr(args, "freeze_decoder_embedding", False)
    args.add_type_embedding = getattr(args, "add_type_embedding", True)
    args.attn_scale_factor = getattr(args, "attn_scale_factor", 2)

    args.code_image_size = getattr(args, "code_image_size", 128)
    args.patch_layernorm_embedding = getattr(args, "patch_layernorm_embedding", True)
    args.code_layernorm_embedding = getattr(args, "code_layernorm_embedding", True)
    args.entangle_position_embedding = getattr(args, "entangle_position_embedding", False)
    args.disable_entangle = getattr(args, "disable_entangle", False)
    args.sync_bn = getattr(args, "sync_bn", False)

    args.scale_attn = getattr(args, "scale_attn", False)
    args.scale_fc = getattr(args, "scale_fc", False)
    args.scale_heads = getattr(args, "scale_heads", False)
    args.scale_resids = getattr(args, "scale_resids", False)


@register_model_architecture("polyformer", "polyformer_b")
def polyformer_b_architecture(args):
    args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 768)
    args.out_index = getattr(args, "out_index", 3)
    args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 4 * 768)
    args.encoder_layers = getattr(args, "encoder_layers", 6)
    args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 12)
    args.decoder_layers = getattr(args, "decoder_layers", 6)
    args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 12)
    args.vis_encoder_type = getattr(args, "vis_encoder_type", "swin-base")
    polyformer_l_architecture(args)