File size: 6,944 Bytes
650c5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import shutil
import os, sys
from subprocess import check_call, check_output
import glob
import argparse
import shutil
import pathlib
import itertools

def call_output(cmd):
    print(f"Executing: {cmd}")
    ret = check_output(cmd, shell=True)
    print(ret)
    return ret

def call(cmd):
    print(cmd)
    check_call(cmd, shell=True)


WORKDIR_ROOT = os.environ.get('WORKDIR_ROOT', None)

if WORKDIR_ROOT is None or  not WORKDIR_ROOT.strip():
    print('please specify your working directory root in OS environment variable WORKDIR_ROOT. Exitting..."')
    sys.exit(-1)

SPM_PATH = os.environ.get('SPM_PATH', None)

if SPM_PATH is None or not SPM_PATH.strip():
    print("Please install sentence piecence from https://github.com/google/sentencepiece and set SPM_PATH pointing to the installed spm_encode.py. Exitting...")
    sys.exit(-1)


SPM_MODEL = f'{WORKDIR_ROOT}/sentence.bpe.model'
SPM_VOCAB = f'{WORKDIR_ROOT}/dict_250k.txt'

SPM_ENCODE = f'{SPM_PATH}'

if not os.path.exists(SPM_MODEL):
    call(f"wget https://dl.fbaipublicfiles.com/fairseq/models/mbart50/sentence.bpe.model -O {SPM_MODEL}")


if not os.path.exists(SPM_VOCAB):
    call(f"wget https://dl.fbaipublicfiles.com/fairseq/models/mbart50/dict_250k.txt -O {SPM_VOCAB}")



def get_data_size(raw):
    cmd = f'wc -l {raw}'
    ret = call_output(cmd)
    return int(ret.split()[0])

def encode_spm(model, direction, prefix='', splits=['train', 'test', 'valid'], pairs_per_shard=None):
    src, tgt = direction.split('-')

    for split in splits:
        src_raw, tgt_raw = f'{RAW_DIR}/{split}{prefix}.{direction}.{src}', f'{RAW_DIR}/{split}{prefix}.{direction}.{tgt}'
        if os.path.exists(src_raw) and os.path.exists(tgt_raw):
            cmd = f"""python {SPM_ENCODE} \
            --model {model}\
            --output_format=piece \
            --inputs {src_raw} {tgt_raw}  \
            --outputs {BPE_DIR}/{direction}{prefix}/{split}.bpe.{src} {BPE_DIR}/{direction}{prefix}/{split}.bpe.{tgt} """
            print(cmd)
            call(cmd)


def binarize_(
    bpe_dir,
    databin_dir,
    direction, spm_vocab=SPM_VOCAB, 
    splits=['train', 'test', 'valid'],
):
    src, tgt = direction.split('-')

    try:
        shutil.rmtree(f'{databin_dir}', ignore_errors=True)
        os.mkdir(f'{databin_dir}')
    except OSError as error:
        print(error)
    cmds = [
        "fairseq-preprocess",
        f"--source-lang {src} --target-lang {tgt}",
        f"--destdir {databin_dir}/",
        f"--workers 8",
    ]
    if isinstance(spm_vocab, tuple):
        src_vocab, tgt_vocab = spm_vocab
        cmds.extend(
            [
                f"--srcdict {src_vocab}",
                f"--tgtdict {tgt_vocab}",
            ]
        )
    else:
        cmds.extend(
            [
                f"--joined-dictionary",
                f"--srcdict {spm_vocab}",
            ]
        )
    input_options = []
    if 'train' in splits and glob.glob(f"{bpe_dir}/train.bpe*"):
        input_options.append(
            f"--trainpref {bpe_dir}/train.bpe",
        )        
    if 'valid' in splits and glob.glob(f"{bpe_dir}/valid.bpe*"):
        input_options.append(f"--validpref {bpe_dir}/valid.bpe")
    if 'test' in splits and glob.glob(f"{bpe_dir}/test.bpe*"):
        input_options.append(f"--testpref {bpe_dir}/test.bpe")   
    if len(input_options) > 0:    
        cmd = " ".join(cmds + input_options)
        print(cmd)
        call(cmd)


def binarize(
    databin_dir,
    direction, spm_vocab=SPM_VOCAB, prefix='',
    splits=['train', 'test', 'valid'],
    pairs_per_shard=None,
):
    def move_databin_files(from_folder, to_folder):
        for bin_file in glob.glob(f"{from_folder}/*.bin") \
            +  glob.glob(f"{from_folder}/*.idx") \
            +  glob.glob(f"{from_folder}/dict*"):
            try:
                shutil.move(bin_file, to_folder)
            except OSError as error:
                print(error)      
    bpe_databin_dir = f"{BPE_DIR}/{direction}{prefix}_databin"
    bpe_dir = f"{BPE_DIR}/{direction}{prefix}"
    if pairs_per_shard is None:
        binarize_(bpe_dir, bpe_databin_dir, direction, spm_vocab=spm_vocab, splits=splits)
        move_databin_files(bpe_databin_dir, databin_dir)
    else:
        # binarize valid and test which will not be sharded
        binarize_(
            bpe_dir, bpe_databin_dir, direction,
            spm_vocab=spm_vocab, splits=[s for s in splits if s != "train"])
        for shard_bpe_dir in glob.glob(f"{bpe_dir}/shard*"):
            path_strs = os.path.split(shard_bpe_dir)
            shard_str = path_strs[-1]
            shard_folder = f"{bpe_databin_dir}/{shard_str}"
            databin_shard_folder = f"{databin_dir}/{shard_str}"
            print(f'working from {shard_folder} to {databin_shard_folder}')
            os.makedirs(databin_shard_folder, exist_ok=True)
            binarize_(
                shard_bpe_dir, shard_folder, direction,
                spm_vocab=spm_vocab, splits=["train"])

            for test_data in glob.glob(f"{bpe_databin_dir}/valid.*") + glob.glob(f"{bpe_databin_dir}/test.*"):
                filename = os.path.split(test_data)[-1]
                try:
                    os.symlink(test_data, f"{databin_shard_folder}/{filename}")
                except OSError as error:
                    print(error)                
            move_databin_files(shard_folder, databin_shard_folder)


def load_langs(path):
    with open(path) as fr:
        langs = [l.strip() for l in fr]
    return langs

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument("--data_root", default=f"{WORKDIR_ROOT}/ML50")
    parser.add_argument("--raw-folder", default='raw')
    parser.add_argument("--bpe-folder", default='bpe')    
    parser.add_argument("--databin-folder", default='databin')    

    args = parser.parse_args()

    DATA_PATH = args.data_root #'/private/home/yuqtang/public_data/ML50'   
    RAW_DIR = f'{DATA_PATH}/{args.raw_folder}'
    BPE_DIR = f'{DATA_PATH}/{args.bpe_folder}'
    DATABIN_DIR = f'{DATA_PATH}/{args.databin_folder}'
    os.makedirs(BPE_DIR, exist_ok=True)

    raw_files = itertools.chain(
        glob.glob(f'{RAW_DIR}/train*'),
        glob.glob(f'{RAW_DIR}/valid*'),
        glob.glob(f'{RAW_DIR}/test*'),
    )

    directions = [os.path.split(file_path)[-1].split('.')[1] for file_path in raw_files]

    for direction in directions:
        prefix = ""
        splits = ['train', 'valid', 'test']
        try:
            shutil.rmtree(f'{BPE_DIR}/{direction}{prefix}', ignore_errors=True)
            os.mkdir(f'{BPE_DIR}/{direction}{prefix}')
            os.makedirs(DATABIN_DIR, exist_ok=True)
        except OSError as error: 
            print(error)     
        spm_model, spm_vocab = SPM_MODEL, SPM_VOCAB
        encode_spm(spm_model, direction=direction, splits=splits)
        binarize(DATABIN_DIR, direction, spm_vocab=spm_vocab, splits=splits)