File size: 3,378 Bytes
650c5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/bin/bash

# The port for communication. Note that if you want to run multiple tasks on the same machine,
# you need to specify different port numbers.
export MASTER_PORT=6092
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
export GPUS_PER_NODE=8


########################## Evaluate Refcoco+ ##########################
user_dir=../../polyformer_module
bpe_dir=../../utils/BPE
selected_cols=0,5,6,2,4,3


model='polyformer_b'
num_bins=64
batch_size=16


for epoch in {100..80}
do
dataset='refcoco+'
split='refcoco+_val'
ckpt_path=../../run_scripts/finetune/${model}_checkpoints/100_5e-5_512/checkpoint_epoch_${epoch}.pt
data=../../datasets/finetune/${dataset}/${split}.tsv
result_path=../../results_${model}/${dataset}/epoch_${epoch}
vis_dir=${result_path}/vis/${split}
result_dir=${result_path}/result/${split}
python3 -m torch.distributed.launch --nproc_per_node=${GPUS_PER_NODE} --master_port=${MASTER_PORT} ../../evaluate.py \
    ${data} \
    --path=${ckpt_path} \
    --user-dir=${user_dir} \
    --task=refcoco \
    --batch-size=${batch_size} \
    --log-format=simple --log-interval=10 \
    --seed=7 \
    --gen-subset=${split} \
    --results-path=${result_path} \
    --no-repeat-ngram-size=3 \
    --fp16 \
    --num-workers=0 \
    --num-bins=${num_bins} \
    --vis_dir=${vis_dir} \
    --result_dir=${result_dir} \
    --model-overrides="{\"data\":\"${data}\",\"bpe_dir\":\"${bpe_dir}\",\"selected_cols\":\"${selected_cols}\"}"

dataset='refcoco'
split='refcoco_val'
ckpt_path=../../run_scripts/finetune/${model}_checkpoints/100_5e-5_512/checkpoint_epoch_${epoch}.pt
data=../../datasets/finetune/${dataset}/${split}.tsv
result_path=../../results_${model}/${dataset}/epoch_${epoch}
vis_dir=${result_path}/vis/${split}
result_dir=${result_path}/result/${split}
python3 -m torch.distributed.launch --nproc_per_node=${GPUS_PER_NODE} --master_port=${MASTER_PORT} ../../evaluate.py \
    ${data} \
    --path=${ckpt_path} \
    --user-dir=${user_dir} \
    --task=refcoco \
    --batch-size=${batch_size} \
    --log-format=simple --log-interval=10 \
    --seed=7 \
    --gen-subset=${split} \
    --results-path=${result_path} \
    --no-repeat-ngram-size=3 \
    --fp16 \
    --num-workers=0 \
    --num-bins=${num_bins} \
    --vis_dir=${vis_dir} \
    --result_dir=${result_dir} \
    --model-overrides="{\"data\":\"${data}\",\"bpe_dir\":\"${bpe_dir}\",\"selected_cols\":\"${selected_cols}\"}"

dataset='refcocog'
split='refcocog_val'
ckpt_path=../../run_scripts/finetune/${model}_checkpoints/100_5e-5_512/checkpoint_epoch_${epoch}.pt
data=../../datasets/finetune/${dataset}/${split}.tsv
result_path=../../results_${model}/${dataset}/epoch_${epoch}
vis_dir=${result_path}/vis/${split}
result_dir=${result_path}/result/${split}
python3 -m torch.distributed.launch --nproc_per_node=${GPUS_PER_NODE} --master_port=${MASTER_PORT} ../../evaluate.py \
    ${data} \
    --path=${ckpt_path} \
    --user-dir=${user_dir} \
    --task=refcoco \
    --batch-size=${batch_size} \
    --log-format=simple --log-interval=10 \
    --seed=7 \
    --gen-subset=${split} \
    --results-path=${result_path} \
    --no-repeat-ngram-size=3 \
    --fp16 \
    --num-workers=0 \
    --num-bins=${num_bins} \
    --vis_dir=${vis_dir} \
    --result_dir=${result_dir} \
    --model-overrides="{\"data\":\"${data}\",\"bpe_dir\":\"${bpe_dir}\",\"selected_cols\":\"${selected_cols}\"}"
done