Spaces:
Running
Running
#!/usr/bin/env python3 | |
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import collections | |
import os | |
import re | |
import torch | |
from fairseq.file_io import PathManager | |
def average_checkpoints(inputs): | |
"""Loads checkpoints from inputs and returns a model with averaged weights. | |
Args: | |
inputs: An iterable of string paths of checkpoints to load from. | |
Returns: | |
A dict of string keys mapping to various values. The 'model' key | |
from the returned dict should correspond to an OrderedDict mapping | |
string parameter names to torch Tensors. | |
""" | |
params_dict = collections.OrderedDict() | |
params_keys = None | |
new_state = None | |
num_models = len(inputs) | |
for fpath in inputs: | |
with PathManager.open(fpath, "rb") as f: | |
state = torch.load( | |
f, | |
map_location=( | |
lambda s, _: torch.serialization.default_restore_location(s, "cpu") | |
), | |
) | |
# Copies over the settings from the first checkpoint | |
if new_state is None: | |
new_state = state | |
model_params = state["model"] | |
model_params_keys = list(model_params.keys()) | |
if params_keys is None: | |
params_keys = model_params_keys | |
elif params_keys != model_params_keys: | |
raise KeyError( | |
"For checkpoint {}, expected list of params: {}, " | |
"but found: {}".format(f, params_keys, model_params_keys) | |
) | |
for k in params_keys: | |
p = model_params[k] | |
if isinstance(p, torch.HalfTensor): | |
p = p.float() | |
if k not in params_dict: | |
params_dict[k] = p.clone() | |
# NOTE: clone() is needed in case of p is a shared parameter | |
else: | |
params_dict[k] += p | |
averaged_params = collections.OrderedDict() | |
for k, v in params_dict.items(): | |
averaged_params[k] = v | |
if averaged_params[k].is_floating_point(): | |
averaged_params[k].div_(num_models) | |
else: | |
averaged_params[k] //= num_models | |
new_state["model"] = averaged_params | |
return new_state | |
def last_n_checkpoints(paths, n, update_based, upper_bound=None): | |
assert len(paths) == 1 | |
path = paths[0] | |
if update_based: | |
pt_regexp = re.compile(r"checkpoint_\d+_(\d+)\.pt") | |
else: | |
pt_regexp = re.compile(r"checkpoint(\d+)\.pt") | |
files = PathManager.ls(path) | |
entries = [] | |
for f in files: | |
m = pt_regexp.fullmatch(f) | |
if m is not None: | |
sort_key = int(m.group(1)) | |
if upper_bound is None or sort_key <= upper_bound: | |
entries.append((sort_key, m.group(0))) | |
if len(entries) < n: | |
raise Exception( | |
"Found {} checkpoint files but need at least {}", len(entries), n | |
) | |
return [os.path.join(path, x[1]) for x in sorted(entries, reverse=True)[:n]] | |
def main(): | |
parser = argparse.ArgumentParser( | |
description="Tool to average the params of input checkpoints to " | |
"produce a new checkpoint", | |
) | |
# fmt: off | |
parser.add_argument('--inputs', required=True, nargs='+', | |
help='Input checkpoint file paths.') | |
parser.add_argument('--output', required=True, metavar='FILE', | |
help='Write the new checkpoint containing the averaged weights to this path.') | |
num_group = parser.add_mutually_exclusive_group() | |
num_group.add_argument('--num-epoch-checkpoints', type=int, | |
help='if set, will try to find checkpoints with names checkpoint_xx.pt in the path specified by input, ' | |
'and average last this many of them.') | |
num_group.add_argument('--num-update-checkpoints', type=int, | |
help='if set, will try to find checkpoints with names checkpoint_ee_xx.pt in the path specified by input, ' | |
'and average last this many of them.') | |
parser.add_argument('--checkpoint-upper-bound', type=int, | |
help='when using --num-epoch-checkpoints, this will set an upper bound on which epoch to use, ' | |
'when using --num-update-checkpoints, this will set an upper bound on which update to use' | |
'e.g., with --num-epoch-checkpoints=10 --checkpoint-upper-bound=50, checkpoints 41-50 would be averaged.' | |
'e.g., with --num-update-checkpoints=10 --checkpoint-upper-bound=50000, checkpoints 40500-50000 would be averaged assuming --save-interval-updates 500' | |
) | |
# fmt: on | |
args = parser.parse_args() | |
print(args) | |
num = None | |
is_update_based = False | |
if args.num_update_checkpoints is not None: | |
num = args.num_update_checkpoints | |
is_update_based = True | |
elif args.num_epoch_checkpoints is not None: | |
num = args.num_epoch_checkpoints | |
assert args.checkpoint_upper_bound is None or ( | |
args.num_epoch_checkpoints is not None | |
or args.num_update_checkpoints is not None | |
), "--checkpoint-upper-bound requires --num-epoch-checkpoints or --num-update-checkpoints" | |
assert ( | |
args.num_epoch_checkpoints is None or args.num_update_checkpoints is None | |
), "Cannot combine --num-epoch-checkpoints and --num-update-checkpoints" | |
if num is not None: | |
args.inputs = last_n_checkpoints( | |
args.inputs, | |
num, | |
is_update_based, | |
upper_bound=args.checkpoint_upper_bound, | |
) | |
print("averaging checkpoints: ", args.inputs) | |
new_state = average_checkpoints(args.inputs) | |
with PathManager.open(args.output, "wb") as f: | |
torch.save(new_state, f) | |
print("Finished writing averaged checkpoint to {}".format(args.output)) | |
if __name__ == "__main__": | |
main() | |