Spaces:
Running
Running
# ------------------------------------------------------------------------ | |
# Modified from OFA (https://github.com/OFA-Sys/OFA) | |
# Copyright 2022 The OFA-Sys Team. | |
# All rights reserved. | |
# This source code is licensed under the Apache 2.0 license | |
# found in the LICENSE file in the root directory. | |
# ------------------------------------------------------------------------ | |
# Modifications Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
import math | |
import os.path | |
import random | |
from typing import Any, Dict, List, Optional, Tuple | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from fairseq import utils | |
from fairseq.distributed import fsdp_wrap | |
from fairseq.models import ( | |
FairseqEncoder, | |
FairseqEncoderDecoderModel, | |
FairseqIncrementalDecoder, | |
register_model, | |
register_model_architecture, | |
) | |
from fairseq.modules import ( | |
AdaptiveSoftmax, | |
BaseLayer, | |
FairseqDropout, | |
LayerDropModuleList, | |
LayerNorm, | |
SinusoidalPositionalEmbedding, | |
GradMultiply | |
) | |
from fairseq.modules.checkpoint_activations import checkpoint_wrapper | |
from fairseq.modules.quant_noise import quant_noise as apply_quant_noise_ | |
from torch import Tensor | |
from .unify_transformer_layer import TransformerEncoderLayer, TransformerDecoderLayer | |
from .swin import SwinTransformer | |
from bert.modeling_bert import BertModel | |
DEFAULT_MAX_SOURCE_POSITIONS = 1024 | |
DEFAULT_MAX_TARGET_POSITIONS = 1024 | |
DEFAULT_MIN_PARAMS_TO_WRAP = int(1e8) | |
def BatchNorm2d(out_chan, momentum=0.1, eps=1e-3): | |
return nn.SyncBatchNorm.convert_sync_batchnorm( | |
nn.BatchNorm2d(out_chan, momentum=momentum, eps=eps) | |
) | |
def make_token_bucket_position(bucket_size, max_position=DEFAULT_MAX_SOURCE_POSITIONS): | |
context_pos = torch.arange(max_position, dtype=torch.long)[:, None] | |
memory_pos = torch.arange(max_position, dtype=torch.long)[None, :] | |
relative_pos = context_pos - memory_pos | |
sign = torch.sign(relative_pos) | |
mid = bucket_size // 2 | |
abs_pos = torch.where((relative_pos<mid) & (relative_pos > -mid), mid-1, torch.abs(relative_pos)) | |
log_pos = torch.ceil(torch.log(abs_pos/mid)/math.log((max_position-1)/mid) * (mid-1)) + mid | |
log_pos = log_pos.int() | |
bucket_pos = torch.where(abs_pos.le(mid), relative_pos, log_pos*sign).long() | |
return bucket_pos + bucket_size - 1 | |
def make_image_bucket_position(bucket_size, num_relative_distance): | |
coords_h = torch.arange(bucket_size) | |
coords_w = torch.arange(bucket_size) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += bucket_size - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += bucket_size - 1 | |
relative_coords[:, :, 0] *= 2 * bucket_size - 1 | |
relative_position_index = torch.zeros(size=(bucket_size * bucket_size + 1,) * 2, dtype=relative_coords.dtype) | |
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
relative_position_index[0, 0:] = num_relative_distance - 3 | |
relative_position_index[0:, 0] = num_relative_distance - 2 | |
relative_position_index[0, 0] = num_relative_distance - 1 | |
return relative_position_index | |
class TransformerModel(FairseqEncoderDecoderModel): | |
""" | |
Transformer model from `"Attention Is All You Need" (Vaswani, et al, 2017) | |
<https://arxiv.org/abs/1706.03762>`_. | |
Args: | |
encoder (TransformerEncoder): the encoder | |
decoder (TransformerDecoder): the decoder | |
The Transformer model provides the following named architectures and | |
command-line arguments: | |
.. argparse:: | |
:ref: fairseq.models.transformer_parser | |
:prog: | |
""" | |
def __init__(self, args, encoder, decoder): | |
super().__init__(encoder, decoder) | |
self.args = args | |
self.supports_align_args = True | |
def add_args(parser): | |
"""Add model-specific arguments to the parser.""" | |
# fmt: off | |
parser.add_argument('--activation-fn', | |
choices=utils.get_available_activation_fns(), | |
help='activation function to use') | |
parser.add_argument('--dropout', type=float, metavar='D', | |
help='dropout probability') | |
parser.add_argument('--attention-dropout', type=float, metavar='D', | |
help='dropout probability for attention weights') | |
parser.add_argument('--activation-dropout', '--relu-dropout', type=float, metavar='D', | |
help='dropout probability after activation in FFN.') | |
parser.add_argument('--encoder-embed-path', type=str, metavar='STR', | |
help='path to pre-trained encoder embedding') | |
parser.add_argument('--encoder-embed-dim', type=int, metavar='N', | |
help='encoder embedding dimension') | |
parser.add_argument('--encoder-ffn-embed-dim', type=int, metavar='N', | |
help='encoder embedding dimension for FFN') | |
parser.add_argument('--encoder-layers', type=int, metavar='N', | |
help='num encoder layers') | |
parser.add_argument('--encoder-attention-heads', type=int, metavar='N', | |
help='num encoder attention heads') | |
parser.add_argument('--encoder-normalize-before', action='store_true', | |
help='apply layernorm before each encoder block') | |
parser.add_argument('--encoder-learned-pos', action='store_true', | |
help='use learned positional embeddings in the encoder') | |
parser.add_argument('--decoder-embed-path', type=str, metavar='STR', | |
help='path to pre-trained decoder embedding') | |
parser.add_argument('--decoder-embed-dim', type=int, metavar='N', | |
help='decoder embedding dimension') | |
parser.add_argument('--decoder-ffn-embed-dim', type=int, metavar='N', | |
help='decoder embedding dimension for FFN') | |
parser.add_argument('--decoder-layers', type=int, metavar='N', | |
help='num decoder layers') | |
parser.add_argument('--decoder-attention-heads', type=int, metavar='N', | |
help='num decoder attention heads') | |
parser.add_argument('--decoder-learned-pos', action='store_true', | |
help='use learned positional embeddings in the decoder') | |
parser.add_argument('--decoder-normalize-before', action='store_true', | |
help='apply layernorm before each decoder block') | |
parser.add_argument('--decoder-output-dim', type=int, metavar='N', | |
help='decoder output dimension (extra linear layer ' | |
'if different from decoder embed dim') | |
parser.add_argument('--share-decoder-input-output-embed', action='store_true', | |
help='share decoder input and output embeddings') | |
parser.add_argument('--share-all-embeddings', action='store_true', | |
help='share encoder, decoder and output embeddings' | |
' (requires shared dictionary and embed dim)') | |
parser.add_argument('--no-token-positional-embeddings', default=False, action='store_true', | |
help='if set, disables positional embeddings (outside self attention)') | |
parser.add_argument('--adaptive-softmax-cutoff', metavar='EXPR', | |
help='comma separated list of adaptive softmax cutoff points. ' | |
'Must be used with adaptive_loss criterion'), | |
parser.add_argument('--adaptive-softmax-dropout', type=float, metavar='D', | |
help='sets adaptive softmax dropout for the tail projections') | |
parser.add_argument('--layernorm-embedding', action='store_true', | |
help='add layernorm to embedding') | |
parser.add_argument('--no-scale-embedding', action='store_true', | |
help='if True, dont scale embeddings') | |
parser.add_argument('--checkpoint-activations', action='store_true', | |
help='checkpoint activations at each layer, which saves GPU ' | |
'memory usage at the cost of some additional compute') | |
parser.add_argument('--offload-activations', action='store_true', | |
help='checkpoint activations at each layer, then save to gpu. Sets --checkpoint-activations.') | |
# args for "Cross+Self-Attention for Transformer Models" (Peitz et al., 2019) | |
parser.add_argument('--no-cross-attention', default=False, action='store_true', | |
help='do not perform cross-attention') | |
parser.add_argument('--cross-self-attention', default=False, action='store_true', | |
help='perform cross+self-attention') | |
# args for "Reducing Transformer Depth on Demand with Structured Dropout" (Fan et al., 2019) | |
parser.add_argument('--encoder-layerdrop', type=float, metavar='D', default=0, | |
help='LayerDrop probability for encoder') | |
parser.add_argument('--decoder-layerdrop', type=float, metavar='D', default=0, | |
help='LayerDrop probability for decoder') | |
parser.add_argument('--encoder-layers-to-keep', default=None, | |
help='which layers to *keep* when pruning as a comma-separated list') | |
parser.add_argument('--decoder-layers-to-keep', default=None, | |
help='which layers to *keep* when pruning as a comma-separated list') | |
# args for Training with Quantization Noise for Extreme Model Compression ({Fan*, Stock*} et al., 2020) | |
parser.add_argument('--quant-noise-pq', type=float, metavar='D', default=0, | |
help='iterative PQ quantization noise at training time') | |
parser.add_argument('--quant-noise-pq-block-size', type=int, metavar='D', default=8, | |
help='block size of quantization noise at training time') | |
parser.add_argument('--quant-noise-scalar', type=float, metavar='D', default=0, | |
help='scalar quantization noise and scalar quantization at training time') | |
# args for Fully Sharded Data Parallel (FSDP) training | |
parser.add_argument( | |
'--min-params-to-wrap', type=int, metavar='D', default=DEFAULT_MIN_PARAMS_TO_WRAP, | |
help=( | |
'minimum number of params for a layer to be wrapped with FSDP() when ' | |
'training with --ddp-backend=fully_sharded. Smaller values will ' | |
'improve memory efficiency, but may make torch.distributed ' | |
'communication less efficient due to smaller input sizes. This option ' | |
'is set to 0 (i.e., always wrap) when --checkpoint-activations or ' | |
'--offload-activations are passed.' | |
) | |
) | |
parser.add_argument('--resnet-drop-path-rate', type=float, | |
help='resnet drop path rate') | |
parser.add_argument('--encoder-drop-path-rate', type=float, | |
help='encoder drop path rate') | |
parser.add_argument('--decoder-drop-path-rate', type=float, | |
help='encoder drop path rate') | |
parser.add_argument('--token-bucket-size', type=int, | |
help='token bucket size') | |
parser.add_argument('--image-bucket-size', type=int, | |
help='image bucket size') | |
parser.add_argument('--attn-scale-factor', type=float, | |
help='attention scale factor') | |
parser.add_argument('--freeze-resnet', action='store_true', | |
help='freeze resnet') | |
parser.add_argument('--freeze-encoder-embedding', action='store_true', | |
help='freeze encoder token embedding') | |
parser.add_argument('--freeze-decoder-embedding', action='store_true', | |
help='freeze decoder token embedding') | |
parser.add_argument('--add-type-embedding', action='store_true', | |
help='add source/region/patch type embedding') | |
parser.add_argument('--resnet-type', choices=['resnet50', 'resnet101', 'resnet152', 'swin-base'], | |
help='resnet type') | |
parser.add_argument('--resnet-model-path', type=str, metavar='STR', | |
help='path to load resnet') | |
parser.add_argument('--code-image-size', type=int, | |
help='code image size') | |
parser.add_argument('--patch-layernorm-embedding', action='store_true', | |
help='add layernorm to patch embedding') | |
parser.add_argument('--code-layernorm-embedding', action='store_true', | |
help='add layernorm to code embedding') | |
parser.add_argument('--entangle-position-embedding', action='store_true', | |
help='entangle position embedding') | |
parser.add_argument('--disable-entangle', action='store_true', | |
help='disable entangle') | |
parser.add_argument('--sync-bn', action='store_true', | |
help='sync batchnorm') | |
parser.add_argument('--scale-attn', action='store_true', | |
help='scale attn') | |
parser.add_argument('--scale-fc', action='store_true', | |
help='scale fc') | |
parser.add_argument('--scale-heads', action='store_true', | |
help='scale heads') | |
parser.add_argument('--scale-resids', action='store_true', | |
help='scale resids') | |
# fmt: on | |
def build_model(cls, args, task): | |
"""Build a new model instance.""" | |
# make sure all arguments are present in older models | |
base_architecture(args) | |
if args.encoder_layers_to_keep: | |
args.encoder_layers = len(args.encoder_layers_to_keep.split(",")) | |
if args.decoder_layers_to_keep: | |
args.decoder_layers = len(args.decoder_layers_to_keep.split(",")) | |
if getattr(args, "max_source_positions", None) is None: | |
args.max_source_positions = DEFAULT_MAX_SOURCE_POSITIONS | |
if getattr(args, "max_target_positions", None) is None: | |
args.max_target_positions = DEFAULT_MAX_TARGET_POSITIONS | |
src_dict, tgt_dict = task.source_dictionary, task.target_dictionary | |
if args.share_all_embeddings: | |
if src_dict != tgt_dict: | |
raise ValueError("--share-all-embeddings requires a joined dictionary") | |
if args.encoder_embed_dim != args.decoder_embed_dim: | |
raise ValueError( | |
"--share-all-embeddings requires --encoder-embed-dim to match --decoder-embed-dim" | |
) | |
if args.decoder_embed_path and ( | |
args.decoder_embed_path != args.encoder_embed_path | |
): | |
raise ValueError( | |
"--share-all-embeddings not compatible with --decoder-embed-path" | |
) | |
encoder_embed_tokens = cls.build_embedding( | |
args, src_dict, args.encoder_embed_dim, args.encoder_embed_path | |
) | |
decoder_embed_tokens = encoder_embed_tokens | |
args.share_decoder_input_output_embed = True | |
else: | |
encoder_embed_tokens = cls.build_embedding( | |
args, src_dict, args.encoder_embed_dim, args.encoder_embed_path | |
) | |
decoder_embed_tokens = cls.build_embedding( | |
args, tgt_dict, args.decoder_embed_dim, args.decoder_embed_path | |
) | |
if getattr(args, "freeze_encoder_embedding", False): | |
encoder_embed_tokens.weight.requires_grad = False | |
if getattr(args, "freeze_decoder_embedding", False): | |
decoder_embed_tokens.weight.requires_grad = False | |
if getattr(args, "offload_activations", False): | |
args.checkpoint_activations = True # offloading implies checkpointing | |
encoder = cls.build_encoder(args, src_dict, encoder_embed_tokens) | |
decoder = cls.build_decoder(args, tgt_dict, decoder_embed_tokens) | |
if not args.share_all_embeddings: | |
min_params_to_wrap = getattr( | |
args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP | |
) | |
# fsdp_wrap is a no-op when --ddp-backend != fully_sharded | |
encoder = fsdp_wrap(encoder, min_num_params=min_params_to_wrap) | |
decoder = fsdp_wrap(decoder, min_num_params=min_params_to_wrap) | |
return cls(args, encoder, decoder) | |
def build_embedding(cls, args, dictionary, embed_dim, path=None): | |
num_embeddings = len(dictionary) | |
padding_idx = dictionary.pad() | |
emb = Embedding(num_embeddings, embed_dim, padding_idx) | |
# if provided, load from preloaded dictionaries | |
if path: | |
embed_dict = utils.parse_embedding(path) | |
utils.load_embedding(embed_dict, dictionary, emb) | |
return emb | |
def build_encoder(cls, args, src_dict, embed_tokens): | |
return TransformerEncoder(args, src_dict, embed_tokens) | |
def build_decoder(cls, args, tgt_dict, embed_tokens): | |
return TransformerDecoder( | |
args, | |
tgt_dict, | |
embed_tokens, | |
no_encoder_attn=getattr(args, "no_cross_attention", False), | |
) | |
# TorchScript doesn't support optional arguments with variable length (**kwargs). | |
# Current workaround is to add union of all arguments in child classes. | |
def forward( | |
self, | |
src_tokens, | |
src_lengths, | |
att_masks, | |
prev_output_tokens_11, | |
prev_output_tokens_12, | |
prev_output_tokens_21, | |
prev_output_tokens_22, | |
delta_x1, | |
delta_y1, | |
delta_x2, | |
delta_y2, | |
return_all_hiddens: bool = True, | |
features_only: bool = False, | |
alignment_layer: Optional[int] = None, | |
alignment_heads: Optional[int] = None, | |
): | |
""" | |
Run the forward pass for an encoder-decoder model. | |
Copied from the base class, but without ``**kwargs``, | |
which are not supported by TorchScript. | |
""" | |
encoder_out = self.encoder( | |
src_tokens, src_lengths=src_lengths, return_all_hiddens=return_all_hiddens | |
) | |
decoder_out = self.decoder( | |
prev_output_tokens_11, | |
prev_output_tokens_12, | |
prev_output_tokens_21, | |
prev_output_tokens_22, | |
delta_x1, | |
delta_y1, | |
delta_x2, | |
delta_y2, | |
encoder_out=encoder_out, | |
features_only=features_only, | |
alignment_layer=alignment_layer, | |
alignment_heads=alignment_heads, | |
src_lengths=src_lengths, | |
return_all_hiddens=return_all_hiddens, | |
) | |
return decoder_out | |
# Since get_normalized_probs is in the Fairseq Model which is not scriptable, | |
# I rewrite the get_normalized_probs from Base Class to call the | |
# helper function in the Base Class. | |
def get_normalized_probs( | |
self, | |
net_output: Tuple[Tensor, Optional[Dict[str, List[Optional[Tensor]]]]], | |
log_probs: bool, | |
sample: Optional[Dict[str, Tensor]] = None, | |
): | |
"""Get normalized probabilities (or log probs) from a net's output.""" | |
return self.get_normalized_probs_scriptable(net_output, log_probs, sample) | |
class TransformerEncoder(FairseqEncoder): | |
""" | |
Transformer encoder consisting of *args.encoder_layers* layers. Each layer | |
is a :class:`TransformerEncoderLayer`. | |
Args: | |
args (argparse.Namespace): parsed command-line arguments | |
dictionary (~fairseq.data.Dictionary): encoding dictionary | |
embed_tokens (torch.nn.Embedding): input embedding | |
""" | |
def __init__(self, args, dictionary, embed_tokens): | |
self.args = args | |
super().__init__(dictionary) | |
self.register_buffer("version", torch.Tensor([3])) | |
self.dropout_module = FairseqDropout( | |
args.dropout, module_name=self.__class__.__name__ | |
) | |
self.encoder_layerdrop = args.encoder_layerdrop | |
embed_dim = embed_tokens.embedding_dim | |
self.padding_idx = embed_tokens.padding_idx | |
self.max_source_positions = args.max_source_positions | |
self.num_attention_heads = args.encoder_attention_heads | |
self.embed_tokens = embed_tokens | |
self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) | |
if getattr(args, "layernorm_embedding", False): | |
self.layernorm_embedding = LayerNorm(embed_dim) | |
else: | |
self.layernorm_embedding = None | |
if getattr(args, "add_type_embedding", False): | |
self.type_embedding = Embedding(2, embed_dim, padding_idx=None) | |
else: | |
self.type_embedding = None | |
conv_dim = 1024 | |
if args.vis_encoder_type == 'swin-base': | |
out_index = args.out_index | |
self.embed_images = SwinTransformer(pretrain_img_size=384, window_size=12, embed_dim=128, | |
out_indices=[out_index], | |
depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32]) | |
if out_index == 2: | |
conv_dim = 512 | |
ckpt_path = "../../pretrained_weights/swin_base_patch4_window12_384_22k.pth" | |
if os.path.exists(ckpt_path): | |
self.embed_images.init_weights(pretrained=ckpt_path) | |
print("Loaded Swin Pretrained Weights", ckpt_path) | |
elif args.vis_encoder_type == 'swin-large': | |
out_indices = args.out_index | |
self.embed_images = SwinTransformer(pretrain_img_size=384, window_size=12, embed_dim=192, | |
out_indices=[out_indices], | |
depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48]) | |
conv_dim = 768 if out_indices == 2 else 1536 | |
ckpt_path = "../../pretrained_weights/swin_large_patch4_window12_384_22k.pth" | |
if os.path.exists(ckpt_path): | |
self.embed_images.init_weights(pretrained=ckpt_path) | |
print("Loaded Swin Pretrained Weights", ckpt_path) | |
else: | |
raise NotImplementedError | |
self.image_proj = Linear(conv_dim, embed_dim) | |
if getattr(args, "patch_layernorm_embedding", False): | |
self.patch_layernorm_embedding = LayerNorm(embed_dim) | |
else: | |
self.patch_layernorm_embedding = None | |
self.embed_positions = Embedding(args.max_source_positions + 2, embed_dim) | |
self.embed_image_positions = Embedding(args.image_bucket_size ** 2 + 1, embed_dim) | |
self.pos_ln = LayerNorm(embed_dim) | |
self.image_pos_ln = LayerNorm(embed_dim) | |
self.pos_scaling = float(embed_dim / args.encoder_attention_heads * args.attn_scale_factor) ** -0.5 | |
self.pos_q_linear = nn.Linear(embed_dim, embed_dim) | |
self.pos_k_linear = nn.Linear(embed_dim, embed_dim) | |
if not args.adaptive_input and args.quant_noise_pq > 0: | |
self.quant_noise = apply_quant_noise_( | |
nn.Linear(embed_dim, embed_dim, bias=False), | |
args.quant_noise_pq, | |
args.quant_noise_pq_block_size, | |
) | |
else: | |
self.quant_noise = None | |
if self.encoder_layerdrop > 0.0: | |
self.layers = LayerDropModuleList(p=self.encoder_layerdrop) | |
else: | |
self.layers = nn.ModuleList([]) | |
dpr = [x.item() for x in torch.linspace(0, args.encoder_drop_path_rate, args.encoder_layers)] | |
self.layers.extend( | |
[self.build_encoder_layer(args, drop_path_rate=dpr[i]) for i in range(args.encoder_layers)] | |
) | |
self.num_layers = len(self.layers) | |
if args.encoder_normalize_before: | |
self.layer_norm = LayerNorm(embed_dim) | |
else: | |
self.layer_norm = None | |
token_bucket_size = args.token_bucket_size | |
token_num_rel_dis = 2 * token_bucket_size - 1 | |
token_rp_bucket = make_token_bucket_position(token_bucket_size) | |
self.token_rel_pos_table_list = nn.ModuleList( | |
[Embedding(token_num_rel_dis, self.num_attention_heads, zero_init=True) for _ in range(args.encoder_layers)] | |
) | |
image_bucket_size = args.image_bucket_size | |
image_num_rel_dis = (2 * image_bucket_size - 1) * (2 * image_bucket_size - 1) + 3 | |
image_rp_bucket = make_image_bucket_position(image_bucket_size, image_num_rel_dis) | |
self.image_rel_pos_table_list = nn.ModuleList( | |
[Embedding(image_num_rel_dis, self.num_attention_heads, zero_init=True) for _ in range(args.encoder_layers)] | |
) | |
self.register_buffer("token_rp_bucket", token_rp_bucket) | |
self.register_buffer("image_rp_bucket", image_rp_bucket) | |
self.entangle_position_embedding = args.entangle_position_embedding | |
self.bert = BertModel.from_pretrained("bert-base-uncased") | |
def train(self, mode=True): | |
super(TransformerEncoder, self).train(mode) | |
if getattr(self.args, "freeze_resnet", False): | |
for m in self.embed_images.modules(): | |
if isinstance(m, nn.BatchNorm2d): | |
m.eval() | |
m.weight.requires_grad = False | |
m.bias.requires_grad = False | |
def build_encoder_layer(self, args, drop_path_rate=0.0): | |
layer = TransformerEncoderLayer(args, drop_path_rate=drop_path_rate) | |
checkpoint = getattr(args, "checkpoint_activations", False) | |
if checkpoint: | |
offload_to_cpu = getattr(args, "offload_activations", False) | |
layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) | |
# if we are checkpointing, enforce that FSDP always wraps the | |
# checkpointed layer, regardless of layer size | |
min_params_to_wrap = ( | |
getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP) | |
if not checkpoint else 0 | |
) | |
layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap) | |
return layer | |
def get_rel_pos_bias(self, x, idx): | |
seq_len = x.size(1) | |
rp_bucket = self.token_rp_bucket[:seq_len, :seq_len] | |
values = F.embedding(rp_bucket, self.token_rel_pos_table_list[idx].weight) | |
values = values.unsqueeze(0).expand(x.size(0), -1, -1, -1) | |
values = values.permute([0, 3, 1, 2]) | |
return values.contiguous() | |
def get_image_rel_pos_bias(self, image_position_ids, idx): | |
bsz, seq_len = image_position_ids.shape | |
rp_bucket_size = self.image_rp_bucket.size(1) | |
rp_bucket = self.image_rp_bucket.unsqueeze(0).expand( | |
bsz, rp_bucket_size, rp_bucket_size | |
).gather(1, image_position_ids[:, :, None].expand(bsz, seq_len, rp_bucket_size) | |
).gather(2, image_position_ids[:, None, :].expand(bsz, seq_len, seq_len)) | |
values = F.embedding(rp_bucket, self.image_rel_pos_table_list[idx].weight) | |
values = values.permute(0, 3, 1, 2) | |
return values | |
def get_patch_images_info(self, patch_images, sample_patch_num, device): | |
image_embed = self.embed_images(patch_images) | |
h, w = image_embed.shape[-2:] | |
image_num_patches = h * w | |
image_padding_mask = patch_images.new_zeros((patch_images.size(0), image_num_patches)).bool() | |
image_position_idx = torch.arange(w).unsqueeze(0).expand(h, w) + \ | |
torch.arange(h).unsqueeze(1) * self.args.image_bucket_size + 1 | |
image_position_idx = image_position_idx.view(-1).to(device) | |
image_position_ids = image_position_idx[None, :].expand(patch_images.size(0), image_num_patches) | |
image_embed = image_embed.flatten(2).transpose(1, 2) | |
if sample_patch_num is not None: | |
patch_orders = [ | |
random.sample(range(image_num_patches), k=sample_patch_num) | |
for _ in range(patch_images.size(0)) | |
] | |
patch_orders = torch.LongTensor(patch_orders).to(device) | |
image_embed = image_embed.gather( | |
1, patch_orders.unsqueeze(2).expand(-1, -1, image_embed.size(2)) | |
) | |
image_num_patches = sample_patch_num | |
image_padding_mask = image_padding_mask.gather(1, patch_orders) | |
image_position_ids = image_position_ids.gather(1, patch_orders) | |
image_pos_embed = self.embed_image_positions(image_position_ids) | |
return image_embed, image_num_patches, image_padding_mask, image_position_ids, image_pos_embed | |
def forward_embedding( | |
self, | |
src_tokens, | |
att_masks, | |
image_embed: Optional[torch.Tensor] = None, | |
token_embedding: Optional[torch.Tensor] = None, | |
pos_embed: Optional[torch.Tensor] = None, | |
image_pos_embed: Optional[torch.Tensor] = None | |
): | |
# embed tokens and positions | |
if token_embedding is None: | |
token_embedding = self.bert(src_tokens, attention_mask=att_masks)[0] | |
x = embed = token_embedding | |
if self.entangle_position_embedding and pos_embed is not None: | |
x += pos_embed | |
if self.type_embedding is not None: | |
x += self.type_embedding(src_tokens.new_zeros(x.size()[:2])) | |
if self.layernorm_embedding is not None: | |
x = self.layernorm_embedding(x) | |
x = self.dropout_module(x) | |
if self.quant_noise is not None: | |
x = self.quant_noise(x) | |
# embed raw images | |
if image_embed is not None: | |
image_embed = self.image_proj(image_embed) | |
image_x = image_embed = image_embed | |
if self.entangle_position_embedding and image_pos_embed is not None: | |
image_x += image_pos_embed | |
if self.type_embedding is not None: | |
image_x += self.type_embedding(src_tokens.new_ones(image_x.size()[:2])) | |
if self.patch_layernorm_embedding is not None: | |
image_x = self.patch_layernorm_embedding(image_x) | |
image_x = self.dropout_module(image_x) | |
if self.quant_noise is not None: | |
image_x = self.quant_noise(image_x) | |
x = torch.cat([image_x, x], dim=1) | |
embed = torch.cat([image_embed, embed], dim=1) | |
return x, embed | |
def forward( | |
self, | |
src_tokens, | |
src_lengths, | |
att_masks, | |
patch_images: Optional[torch.Tensor] = None, | |
patch_masks: Optional[torch.Tensor] = None, | |
code_masks: Optional[torch.Tensor] = None, | |
return_all_hiddens: bool = False, | |
token_embeddings: Optional[torch.Tensor] = None, | |
sample_patch_num: Optional[int] = None | |
): | |
""" | |
Args: | |
src_tokens (LongTensor): tokens in the source language of shape | |
`(batch, src_len)` | |
src_lengths (torch.LongTensor): lengths of each source sentence of | |
shape `(batch)` | |
return_all_hiddens (bool, optional): also return all of the | |
intermediate hidden states (default: False). | |
token_embeddings (torch.Tensor, optional): precomputed embeddings | |
default `None` will recompute embeddings | |
Returns: | |
dict: | |
- **encoder_out** (Tensor): the last encoder layer's output of | |
shape `(src_len, batch, embed_dim)` | |
- **encoder_padding_mask** (ByteTensor): the positions of | |
padding elements of shape `(batch, src_len)` | |
- **encoder_embedding** (Tensor): the (scaled) embedding lookup | |
of shape `(batch, src_len, embed_dim)` | |
- **encoder_states** (List[Tensor]): all intermediate | |
hidden states of shape `(src_len, batch, embed_dim)`. | |
Only populated if *return_all_hiddens* is True. | |
""" | |
return self.forward_scriptable(src_tokens, | |
src_lengths, | |
att_masks, | |
patch_images, | |
patch_masks, | |
return_all_hiddens, | |
token_embeddings, | |
sample_patch_num) | |
# TorchScript doesn't support super() method so that the scriptable Subclass | |
# can't access the base class model in Torchscript. | |
# Current workaround is to add a helper function with different name and | |
# call the helper function from scriptable Subclass. | |
def forward_scriptable( | |
self, | |
src_tokens, | |
src_lengths, | |
att_masks, | |
patch_images: Optional[torch.Tensor] = None, | |
patch_masks: Optional[torch.Tensor] = None, | |
return_all_hiddens: bool = False, | |
token_embeddings: Optional[torch.Tensor] = None, | |
sample_patch_num: Optional[int] = None | |
): | |
""" | |
Args: | |
src_tokens (LongTensor): tokens in the source language of shape | |
`(batch, src_len)` | |
src_lengths (torch.LongTensor): lengths of each source sentence of | |
shape `(batch)` | |
return_all_hiddens (bool, optional): also return all of the | |
intermediate hidden states (default: False). | |
token_embeddings (torch.Tensor, optional): precomputed embeddings | |
default `None` will recompute embeddings | |
Returns: | |
dict: | |
- **encoder_out** (Tensor): the last encoder layer's output of | |
shape `(src_len, batch, embed_dim)` | |
- **encoder_padding_mask** (ByteTensor): the positions of | |
padding elements of shape `(batch, src_len)` | |
- **encoder_embedding** (Tensor): the (scaled) embedding lookup | |
of shape `(batch, src_len, embed_dim)` | |
- **encoder_states** (List[Tensor]): all intermediate | |
hidden states of shape `(src_len, batch, embed_dim)`. | |
Only populated if *return_all_hiddens* is True. | |
""" | |
image_embed = None | |
image_pos_embed = None | |
if patch_images is not None: | |
image_embed, image_num_patches, image_padding_mask, image_position_ids, image_pos_embed = \ | |
self.get_patch_images_info(patch_images, sample_patch_num, src_tokens.device) | |
image_padding_mask[~patch_masks] = True | |
encoder_padding_mask = src_tokens.eq(0) | |
#encoder_padding_mask = src_tokens.eq(self.padding_idx) | |
if patch_images is not None: | |
encoder_padding_mask = torch.cat([image_padding_mask, encoder_padding_mask], dim=1) | |
has_pads = (src_tokens.device.type == "xla" or encoder_padding_mask.any()) | |
pos_embed = self.embed_positions(utils.new_arange(src_tokens)) | |
x, encoder_embedding = self.forward_embedding( | |
src_tokens, att_masks, image_embed, token_embeddings, | |
pos_embed, image_pos_embed | |
) | |
# account for padding while computing the representation | |
if has_pads: | |
x = x * (1 - encoder_padding_mask.unsqueeze(-1).type_as(x)) | |
# B x T x C -> T x B x C | |
x = x.transpose(0, 1) | |
pos_embed = self.pos_ln(pos_embed) | |
if patch_images is not None: | |
image_pos_embed = self.image_pos_ln(image_pos_embed) | |
pos_embed = torch.cat([image_pos_embed, pos_embed], dim=1) | |
pos_q = self.pos_q_linear(pos_embed).view( | |
x.size(1), x.size(0), self.num_attention_heads, -1 | |
).transpose(1, 2) * self.pos_scaling | |
pos_k = self.pos_k_linear(pos_embed).view( | |
x.size(1), x.size(0), self.num_attention_heads, -1 | |
).transpose(1, 2) | |
abs_pos_bias = torch.matmul(pos_q, pos_k.transpose(2, 3)) | |
encoder_states = [] | |
if return_all_hiddens: | |
encoder_states.append(x) | |
# encoder layers | |
for idx, layer in enumerate(self.layers): | |
self_attn_bias = abs_pos_bias.clone() | |
self_attn_bias[:, :, -src_tokens.size(1):, -src_tokens.size(1):] += self.get_rel_pos_bias(src_tokens, idx) | |
if patch_images is not None: | |
self_attn_bias[:, :, :x.size(0) - src_tokens.size(1), :x.size(0) - src_tokens.size(1)] += \ | |
self.get_image_rel_pos_bias(image_position_ids, idx) | |
self_attn_bias = self_attn_bias.reshape(-1, x.size(0), x.size(0)) | |
x = layer( | |
x, encoder_padding_mask=encoder_padding_mask if has_pads else None, self_attn_bias=self_attn_bias | |
) | |
if return_all_hiddens: | |
assert encoder_states is not None | |
encoder_states.append(x) | |
if self.layer_norm is not None: | |
x = self.layer_norm(x) | |
# The Pytorch Mobile lite interpreter does not supports returning NamedTuple in | |
# `forward` so we use a dictionary instead. | |
# TorchScript does not support mixed values so the values are all lists. | |
# The empty list is equivalent to None. | |
return { | |
"encoder_out": [x], # T x B x C | |
"encoder_padding_mask": [encoder_padding_mask], # B x T | |
"encoder_embedding": [], # B x T x C | |
"encoder_states": encoder_states, # List[T x B x C] | |
"src_tokens": [], | |
"src_lengths": [], | |
"position_embeddings": [pos_embed], # B x T x C | |
} | |
def reorder_encoder_out(self, encoder_out: Dict[str, List[Tensor]], new_order): | |
""" | |
Reorder encoder output according to *new_order*. | |
Args: | |
encoder_out: output from the ``forward()`` method | |
new_order (LongTensor): desired order | |
Returns: | |
*encoder_out* rearranged according to *new_order* | |
""" | |
if len(encoder_out["encoder_out"]) == 0: | |
new_encoder_out = [] | |
else: | |
new_encoder_out = [encoder_out["encoder_out"][0].index_select(1, new_order)] | |
if len(encoder_out["encoder_padding_mask"]) == 0: | |
new_encoder_padding_mask = [] | |
else: | |
new_encoder_padding_mask = [ | |
encoder_out["encoder_padding_mask"][0].index_select(0, new_order) | |
] | |
if len(encoder_out["encoder_embedding"]) == 0: | |
new_encoder_embedding = [] | |
else: | |
new_encoder_embedding = [ | |
encoder_out["encoder_embedding"][0].index_select(0, new_order) | |
] | |
if len(encoder_out["src_tokens"]) == 0: | |
new_src_tokens = [] | |
else: | |
new_src_tokens = [(encoder_out["src_tokens"][0]).index_select(0, new_order)] | |
if len(encoder_out["src_lengths"]) == 0: | |
new_src_lengths = [] | |
else: | |
new_src_lengths = [(encoder_out["src_lengths"][0]).index_select(0, new_order)] | |
if len(encoder_out["position_embeddings"]) == 0: | |
new_position_embeddings = [] | |
else: | |
new_position_embeddings = [(encoder_out["position_embeddings"][0]).index_select(0, new_order)] | |
encoder_states = encoder_out["encoder_states"] | |
if len(encoder_states) > 0: | |
for idx, state in enumerate(encoder_states): | |
encoder_states[idx] = state.index_select(1, new_order) | |
return { | |
"encoder_out": new_encoder_out, # T x B x C | |
"encoder_padding_mask": new_encoder_padding_mask, # B x T | |
"encoder_embedding": new_encoder_embedding, # B x T x C | |
"encoder_states": encoder_states, # List[T x B x C] | |
"src_tokens": new_src_tokens, # B x T | |
"src_lengths": new_src_lengths, # B x 1 | |
"position_embeddings": new_position_embeddings, # B x T x C | |
} | |
def max_positions(self): | |
"""Maximum input length supported by the encoder.""" | |
if self.embed_positions is None: | |
return self.max_source_positions | |
return self.max_source_positions | |
def upgrade_state_dict_named(self, state_dict, name): | |
"""Upgrade a (possibly old) state dict for new versions of fairseq.""" | |
if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): | |
weights_key = "{}.embed_positions.weights".format(name) | |
if weights_key in state_dict: | |
print("deleting {0}".format(weights_key)) | |
del state_dict[weights_key] | |
state_dict[ | |
"{}.embed_positions._float_tensor".format(name) | |
] = torch.FloatTensor(1) | |
for i in range(self.num_layers): | |
# update layer norms | |
self.layers[i].upgrade_state_dict_named( | |
state_dict, "{}.layers.{}".format(name, i) | |
) | |
# version_key = "{}.version".format(name) | |
# if utils.item(state_dict.get(version_key, torch.Tensor([1]))[0]) < 2: | |
# # earlier checkpoints did not normalize after the stack of layers | |
# self.layer_norm = None | |
# self.normalize = False | |
# state_dict[version_key] = torch.Tensor([1]) | |
prefix = name + "." if name != "" else "" | |
for param_name, param_tensor in self.state_dict().items(): | |
if (prefix + param_name) not in state_dict: | |
state_dict[prefix + param_name] = self.state_dict()[param_name] | |
if len(state_dict["encoder.embed_image_positions.weight"]) < len(self.state_dict()["embed_image_positions.weight"]): | |
num_posids_to_add = len(self.state_dict()["embed_image_positions.weight"]) - len(state_dict["encoder.embed_image_positions.weight"]) | |
embed_dim = state_dict["encoder.embed_image_positions.weight"].size(1) | |
new_pos_embed_to_add = torch.zeros(num_posids_to_add, embed_dim) | |
nn.init.normal_(new_pos_embed_to_add, mean=0, std=embed_dim ** -0.5) | |
new_pos_embed_to_add = new_pos_embed_to_add.to( | |
dtype=state_dict["encoder.embed_image_positions.weight"].dtype, | |
) | |
state_dict["encoder.embed_image_positions.weight"] = torch.cat( | |
[state_dict["encoder.embed_image_positions.weight"], new_pos_embed_to_add] | |
) | |
return state_dict | |
class TransformerDecoder(FairseqIncrementalDecoder): | |
""" | |
Transformer decoder consisting of *args.decoder_layers* layers. Each layer | |
is a :class:`TransformerDecoderLayer`. | |
Args: | |
args (argparse.Namespace): parsed command-line arguments | |
dictionary (~fairseq.data.Dictionary): decoding dictionary | |
embed_tokens (torch.nn.Embedding): output embedding | |
no_encoder_attn (bool, optional): whether to attend to encoder outputs | |
(default: False). | |
""" | |
def __init__( | |
self, | |
args, | |
dictionary, | |
embed_tokens, | |
no_encoder_attn=False, | |
output_projection=None, | |
): | |
self.args = args | |
super().__init__(dictionary) | |
self.register_buffer("version", torch.Tensor([3])) | |
self._future_mask = torch.empty(0) | |
self.dropout_module = FairseqDropout( | |
args.dropout, module_name=self.__class__.__name__ | |
) | |
self.decoder_layerdrop = args.decoder_layerdrop | |
self.share_input_output_embed = args.share_decoder_input_output_embed | |
self.num_attention_heads = args.decoder_attention_heads | |
input_embed_dim = embed_tokens.embedding_dim | |
embed_dim = args.decoder_embed_dim | |
self.embed_dim = embed_dim | |
self.output_embed_dim = args.decoder_output_dim | |
self.padding_idx = embed_tokens.padding_idx | |
self.max_target_positions = args.max_target_positions | |
self.embed_tokens = embed_tokens | |
self.embed_scale = 1.0 if args.no_scale_embedding else math.sqrt(embed_dim) | |
if not args.adaptive_input and args.quant_noise_pq > 0: | |
self.quant_noise = apply_quant_noise_( | |
nn.Linear(embed_dim, embed_dim, bias=False), | |
args.quant_noise_pq, | |
args.quant_noise_pq_block_size, | |
) | |
else: | |
self.quant_noise = None | |
self.project_in_dim = ( | |
Linear(input_embed_dim, embed_dim, bias=False) | |
if embed_dim != input_embed_dim | |
else None | |
) | |
if getattr(args, "layernorm_embedding", False): | |
self.layernorm_embedding = LayerNorm(embed_dim) | |
else: | |
self.layernorm_embedding = None | |
self.window_size = args.code_image_size // 8 | |
self.embed_positions = Embedding(args.max_target_positions + 2, embed_dim) | |
self.embed_image_positions = Embedding(args.image_bucket_size ** 2 + 1, embed_dim) | |
self.pos_ln = LayerNorm(embed_dim) | |
self.image_pos_ln = LayerNorm(embed_dim) | |
self.pos_scaling = float(embed_dim / self.num_attention_heads * args.attn_scale_factor) ** -0.5 | |
self.self_pos_q_linear = nn.Linear(embed_dim, embed_dim) | |
self.self_pos_k_linear = nn.Linear(embed_dim, embed_dim) | |
self.cross_pos_q_linear = nn.Linear(embed_dim, embed_dim) | |
self.cross_pos_k_linear = nn.Linear(embed_dim, embed_dim) | |
if getattr(args, "code_layernorm_embedding", False): | |
self.code_layernorm_embedding = LayerNorm(embed_dim) | |
else: | |
self.code_layernorm_embedding = None | |
self.cross_self_attention = getattr(args, "cross_self_attention", False) | |
if self.decoder_layerdrop > 0.0: | |
self.layers = LayerDropModuleList(p=self.decoder_layerdrop) | |
else: | |
self.layers = nn.ModuleList([]) | |
dpr = [x.item() for x in torch.linspace(0, args.decoder_drop_path_rate, args.decoder_layers)] | |
self.layers.extend( | |
[ | |
self.build_decoder_layer(args, no_encoder_attn, drop_path_rate=dpr[i]) | |
for i in range(args.decoder_layers) | |
] | |
) | |
self.num_layers = len(self.layers) | |
if args.decoder_normalize_before: | |
self.layer_norm = LayerNorm(embed_dim) | |
else: | |
self.layer_norm = None | |
self.project_out_dim = ( | |
Linear(embed_dim, self.output_embed_dim, bias=False) | |
if embed_dim != self.output_embed_dim and not args.tie_adaptive_weights | |
else None | |
) | |
self.adaptive_softmax = None | |
self.reg_head = output_projection | |
if self.reg_head is None: | |
self.build_output_projection(args, dictionary, embed_tokens) | |
token_bucket_size = args.token_bucket_size | |
token_num_rel_dis = 2 * token_bucket_size - 1 | |
token_rp_bucket = make_token_bucket_position(token_bucket_size) | |
self.token_rel_pos_table_list = nn.ModuleList( | |
[Embedding(token_num_rel_dis, self.num_attention_heads, zero_init=True) for _ in range(args.decoder_layers)] | |
) | |
image_bucket_size = args.image_bucket_size | |
image_num_rel_dis = (2 * image_bucket_size - 1) * (2 * image_bucket_size - 1) + 3 | |
image_rp_bucket = make_image_bucket_position(image_bucket_size, image_num_rel_dis) | |
image_position_idx = torch.arange(self.window_size).unsqueeze(0).expand(self.window_size, self.window_size) + \ | |
torch.arange(self.window_size).unsqueeze(1) * image_bucket_size + 1 | |
image_position_idx = torch.cat([torch.tensor([0]), image_position_idx.view(-1)]) | |
image_position_idx = torch.cat([image_position_idx, torch.tensor([1024] * 768)]) | |
self.image_rel_pos_table_list = nn.ModuleList( | |
[Embedding(image_num_rel_dis, self.num_attention_heads, zero_init=True) for _ in range(args.decoder_layers)] | |
) | |
self.register_buffer("token_rp_bucket", token_rp_bucket) | |
self.register_buffer("image_rp_bucket", image_rp_bucket) | |
self.register_buffer("image_position_idx", image_position_idx) | |
self.entangle_position_embedding = args.entangle_position_embedding | |
def build_output_projection(self, args, dictionary, embed_tokens): | |
self.reg_head = MLP(self.output_embed_dim, self.output_embed_dim, 2, 3) | |
nn.init.constant_(self.reg_head.layers[-1].weight.data, 0) | |
nn.init.constant_(self.reg_head.layers[-1].bias.data, 0) | |
# classify token types | |
self.cls_head = nn.Linear( | |
self.output_embed_dim, 3, bias=False | |
) # 3 types: coordinate, polygon separator, eos | |
nn.init.normal_( | |
self.cls_head.weight, mean=0, std=self.output_embed_dim ** -0.5 | |
) | |
num_base_layers = getattr(args, "base_layers", 0) | |
for i in range(num_base_layers): | |
self.layers.insert(((i+1) * args.decoder_layers) // (num_base_layers + 1), BaseLayer(args)) | |
def build_decoder_layer(self, args, no_encoder_attn=False, drop_path_rate=0.0): | |
layer = TransformerDecoderLayer(args, no_encoder_attn, drop_path_rate=drop_path_rate) | |
checkpoint = getattr(args, "checkpoint_activations", False) | |
if checkpoint: | |
offload_to_cpu = getattr(args, "offload_activations", False) | |
layer = checkpoint_wrapper(layer, offload_to_cpu=offload_to_cpu) | |
# if we are checkpointing, enforce that FSDP always wraps the | |
# checkpointed layer, regardless of layer size | |
min_params_to_wrap = ( | |
getattr(args, "min_params_to_wrap", DEFAULT_MIN_PARAMS_TO_WRAP) | |
if not checkpoint else 0 | |
) | |
layer = fsdp_wrap(layer, min_num_params=min_params_to_wrap) | |
return layer | |
def get_rel_pos_bias(self, x, idx): | |
seq_len = x.size(1) | |
rp_bucket = self.token_rp_bucket[:seq_len, :seq_len] | |
values = F.embedding(rp_bucket, self.token_rel_pos_table_list[idx].weight) | |
values = values.permute([2, 0, 1]) | |
return values.contiguous() | |
def get_image_rel_pos_bias(self, x, idx): | |
seq_len = x.size(1) | |
image_position_idx = self.image_position_idx[:seq_len] | |
rp_bucket = self.image_rp_bucket[image_position_idx][:, image_position_idx] | |
values = F.embedding(rp_bucket, self.image_rel_pos_table_list[idx].weight) | |
values = values.permute(2, 0, 1) | |
return values | |
def get_pos_info(self, tokens, tgt_pos_embed, src_pos_embed=None, use_image=False): | |
batch_size = tokens.size(0) | |
tgt_len = tokens.size(1) | |
tgt_pos_embed = self.image_pos_ln(tgt_pos_embed) if use_image else self.pos_ln(tgt_pos_embed) | |
if src_pos_embed is not None: | |
src_len = src_pos_embed.size(1) | |
pos_q = self.cross_pos_q_linear(tgt_pos_embed).view( | |
batch_size, tgt_len, self.num_attention_heads, -1 | |
).transpose(1, 2) * self.pos_scaling | |
pos_k = self.cross_pos_k_linear(src_pos_embed).view( | |
batch_size, src_len, self.num_attention_heads, -1 | |
).transpose(1, 2) | |
else: | |
src_len = tgt_pos_embed.size(1) | |
pos_q = self.self_pos_q_linear(tgt_pos_embed).view( | |
batch_size, tgt_len, self.num_attention_heads, -1 | |
).transpose(1, 2) * self.pos_scaling | |
pos_k = self.self_pos_k_linear(tgt_pos_embed).view( | |
batch_size, src_len, self.num_attention_heads, -1 | |
).transpose(1, 2) | |
abs_pos_bias = torch.matmul(pos_q, pos_k.transpose(2, 3)) | |
return abs_pos_bias | |
def forward( | |
self, | |
prev_output_tokens_11, | |
prev_output_tokens_12, | |
prev_output_tokens_21, | |
prev_output_tokens_22, | |
delta_x1, | |
delta_y1, | |
delta_x2, | |
delta_y2, | |
code_masks: Optional[torch.Tensor] = None, | |
encoder_out: Optional[Dict[str, List[Tensor]]] = None, | |
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, | |
features_only: bool = False, | |
full_context_alignment: bool = False, | |
alignment_layer: Optional[int] = None, | |
alignment_heads: Optional[int] = None, | |
src_lengths: Optional[Any] = None, | |
return_all_hiddens: bool = False, | |
): | |
""" | |
Args: | |
prev_output_tokens (LongTensor): previous decoder outputs of shape | |
`(batch, tgt_len)`, for teacher forcing | |
encoder_out (optional): output from the encoder, used for | |
encoder-side attention, should be of size T x B x C | |
incremental_state (dict): dictionary used for storing state during | |
:ref:`Incremental decoding` | |
features_only (bool, optional): only return features without | |
applying output layer (default: False). | |
full_context_alignment (bool, optional): don't apply | |
auto-regressive mask to self-attention (default: False). | |
Returns: | |
tuple: | |
- the decoder's output of shape `(batch, tgt_len, vocab)` | |
- a dictionary with any model-specific outputs | |
""" | |
x, extra = self.extract_features( | |
prev_output_tokens_11, | |
prev_output_tokens_12, | |
prev_output_tokens_21, | |
prev_output_tokens_22, | |
delta_x1, | |
delta_y1, | |
delta_x2, | |
delta_y2, | |
code_masks=code_masks, | |
encoder_out=encoder_out, | |
incremental_state=incremental_state, | |
full_context_alignment=full_context_alignment, | |
alignment_layer=alignment_layer, | |
alignment_heads=alignment_heads, | |
) | |
x1 = x | |
x2 = None | |
if not features_only: | |
x1, x2 = self.output_layer(x) | |
return x1, x2, extra | |
def extract_features( | |
self, | |
prev_output_tokens_11, | |
prev_output_tokens_12, | |
prev_output_tokens_21, | |
prev_output_tokens_22, | |
delta_x1, | |
delta_y1, | |
delta_x2, | |
delta_y2, | |
code_masks: Optional[torch.Tensor], | |
encoder_out: Optional[Dict[str, List[Tensor]]], | |
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, | |
full_context_alignment: bool = False, | |
alignment_layer: Optional[int] = None, | |
alignment_heads: Optional[int] = None, | |
): | |
return self.extract_features_scriptable( | |
prev_output_tokens_11, | |
prev_output_tokens_12, | |
prev_output_tokens_21, | |
prev_output_tokens_22, | |
delta_x1, | |
delta_y1, | |
delta_x2, | |
delta_y2, | |
code_masks, | |
encoder_out, | |
incremental_state, | |
full_context_alignment, | |
alignment_layer, | |
alignment_heads, | |
) | |
""" | |
A scriptable subclass of this class has an extract_features method and calls | |
super().extract_features, but super() is not supported in torchscript. A copy of | |
this function is made to be used in the subclass instead. | |
""" | |
def extract_features_scriptable( | |
self, | |
prev_output_tokens_11, | |
prev_output_tokens_12, | |
prev_output_tokens_21, | |
prev_output_tokens_22, | |
delta_x1, | |
delta_y1, | |
delta_x2, | |
delta_y2, | |
code_masks: Optional[torch.Tensor], | |
encoder_out: Optional[Dict[str, List[Tensor]]], | |
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None, | |
full_context_alignment: bool = False, | |
alignment_layer: Optional[int] = None, | |
alignment_heads: Optional[int] = None, | |
): | |
""" | |
Similar to *forward* but only return features. | |
Includes several features from "Jointly Learning to Align and | |
Translate with Transformer Models" (Garg et al., EMNLP 2019). | |
Args: | |
full_context_alignment (bool, optional): don't apply | |
auto-regressive mask to self-attention (default: False). | |
alignment_layer (int, optional): return mean alignment over | |
heads at this layer (default: last layer). | |
alignment_heads (int, optional): only average alignment over | |
this many heads (default: all heads). | |
Returns: | |
tuple: | |
- the decoder's features of shape `(batch, tgt_len, embed_dim)` | |
- a dictionary with any model-specific outputs | |
""" | |
prev_output_tokens = prev_output_tokens_11 | |
bs, slen = prev_output_tokens.size() | |
if alignment_layer is None: | |
alignment_layer = self.num_layers - 1 | |
enc: Optional[Tensor] = None | |
padding_mask: Optional[Tensor] = None | |
if encoder_out is not None and len(encoder_out["encoder_out"]) > 0: | |
enc = encoder_out["encoder_out"][0] | |
assert ( | |
enc.size()[1] == bs | |
), f"Expected enc.shape == (t, {bs}, c) got {enc.shape}" | |
if encoder_out is not None and len(encoder_out["encoder_padding_mask"]) > 0: | |
padding_mask = encoder_out["encoder_padding_mask"][0] | |
bsz, tgt_len = prev_output_tokens.shape | |
token_position_idx = utils.new_arange(prev_output_tokens) | |
tgt_pos_embed = self.embed_positions(token_position_idx) | |
if code_masks is not None and torch.any(code_masks): | |
image_position_idx = self.image_position_idx[:prev_output_tokens.size(1)].unsqueeze(0).expand(bsz, tgt_len) | |
tgt_pos_embed[code_masks] = self.embed_image_positions(image_position_idx)[code_masks] | |
# self attn position bias | |
self_abs_pos_bias = self.get_pos_info(prev_output_tokens, tgt_pos_embed, use_image=False) | |
if code_masks is not None and torch.any(code_masks): | |
self_image_abs_pos_bias = self.get_pos_info(prev_output_tokens, tgt_pos_embed, use_image=True) | |
self_abs_pos_bias[code_masks] = self_image_abs_pos_bias[code_masks] | |
# cross attn position bias | |
src_pos_embed = encoder_out['position_embeddings'][0] | |
cross_abs_pos_bias = self.get_pos_info(prev_output_tokens, tgt_pos_embed, src_pos_embed=src_pos_embed) | |
if code_masks is not None and torch.any(code_masks): | |
cross_image_abs_pos_bias = self.get_pos_info(prev_output_tokens, tgt_pos_embed, src_pos_embed=src_pos_embed, use_image=True) | |
cross_abs_pos_bias[code_masks] = cross_image_abs_pos_bias[code_masks] | |
cross_abs_pos_bias = cross_abs_pos_bias.reshape(-1, *cross_abs_pos_bias.size()[-2:]) | |
all_prev_output_tokens = prev_output_tokens.clone() | |
if incremental_state is not None: | |
prev_output_tokens = prev_output_tokens[:, -1:] | |
cross_abs_pos_bias = cross_abs_pos_bias[:, -1:, :] | |
tgt_pos_embed = tgt_pos_embed[:, -1:, :] | |
# embed tokens and positions | |
token_embedding_11 = self.embed_tokens(prev_output_tokens_11) | |
token_embedding_12 = self.embed_tokens(prev_output_tokens_12) | |
token_embedding_21 = self.embed_tokens(prev_output_tokens_21) | |
token_embedding_22 = self.embed_tokens(prev_output_tokens_22) | |
delta_x1 = delta_x1.unsqueeze(-1).repeat(1, 1, token_embedding_11.shape[-1]) | |
delta_x2 = delta_x2.unsqueeze(-1).repeat(1, 1, token_embedding_11.shape[-1]) | |
delta_y1 = delta_y1.unsqueeze(-1).repeat(1, 1, token_embedding_11.shape[-1]) | |
delta_y2 = delta_y2.unsqueeze(-1).repeat(1, 1, token_embedding_11.shape[-1]) | |
token_embedding = token_embedding_11*delta_x2*delta_y2 + token_embedding_12*delta_x2*delta_y1 + \ | |
token_embedding_21*delta_x1*delta_y2 + token_embedding_22*delta_x1*delta_y1 | |
x = self.embed_scale * token_embedding | |
if self.quant_noise is not None: | |
x = self.quant_noise(x) | |
if self.project_in_dim is not None: | |
x = self.project_in_dim(x) | |
if self.entangle_position_embedding is not None and not self.args.disable_entangle: | |
x += tgt_pos_embed | |
if self.layernorm_embedding is not None: | |
if code_masks is None or not code_masks.any() or not getattr(self, "code_layernorm_embedding", False): | |
x = self.layernorm_embedding(x.half()) | |
elif code_masks is not None and code_masks.all(): | |
x = self.code_layernorm_embedding(x) | |
else: | |
x[~code_masks] = self.layernorm_embedding(x[~code_masks]) | |
x[code_masks] = self.code_layernorm_embedding(x[code_masks]) | |
x = self.dropout_module(x) | |
# B x T x C -> T x B x C | |
x = x.transpose(0, 1) | |
self_attn_padding_mask: Optional[Tensor] = None | |
if self.cross_self_attention or prev_output_tokens.eq(self.padding_idx).any(): | |
self_attn_padding_mask = prev_output_tokens.eq(self.padding_idx) | |
# decoder layers | |
attn: Optional[Tensor] = None | |
inner_states: List[Optional[Tensor]] = [x] | |
for idx, layer in enumerate(self.layers): | |
if incremental_state is None and not full_context_alignment: | |
self_attn_mask = self.buffered_future_mask(x) | |
else: | |
self_attn_mask = None | |
self_attn_bias = self_abs_pos_bias.clone() | |
if code_masks is None or not code_masks.any(): | |
self_attn_bias += self.get_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0) | |
elif code_masks is not None and code_masks.all(): | |
self_attn_bias += self.get_image_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0) | |
else: | |
self_attn_bias[~code_masks] += self.get_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0) | |
self_attn_bias[code_masks] += self.get_image_rel_pos_bias(all_prev_output_tokens, idx).unsqueeze(0) | |
self_attn_bias = self_attn_bias.reshape(-1, *self_attn_bias.size()[-2:]) | |
if incremental_state is not None: | |
self_attn_bias = self_attn_bias[:, -1:, :] | |
x, layer_attn, _ = layer( | |
x, | |
enc, | |
padding_mask, | |
incremental_state, | |
self_attn_mask=self_attn_mask, | |
self_attn_padding_mask=self_attn_padding_mask, | |
need_attn=bool((idx == alignment_layer)), | |
need_head_weights=bool((idx == alignment_layer)), | |
self_attn_bias=self_attn_bias, | |
cross_attn_bias=cross_abs_pos_bias | |
) | |
inner_states.append(x) | |
if layer_attn is not None and idx == alignment_layer: | |
attn = layer_attn.float().to(x) | |
if attn is not None: | |
if alignment_heads is not None: | |
attn = attn[:alignment_heads] | |
# average probabilities over heads | |
attn = attn.mean(dim=0) | |
if self.layer_norm is not None: | |
x = self.layer_norm(x) | |
# T x B x C -> B x T x C | |
x = x.transpose(0, 1) | |
if self.project_out_dim is not None: | |
x = self.project_out_dim(x) | |
return x, {"attn": [attn], "inner_states": inner_states} | |
def output_layer(self, features): | |
"""Project features to the vocabulary size.""" | |
if self.adaptive_softmax is None: | |
# project back to size of vocabulary | |
return self.cls_head(features), F.sigmoid(self.reg_head(features)) | |
else: | |
return features | |
def max_positions(self): | |
"""Maximum output length supported by the decoder.""" | |
if self.embed_positions is None: | |
return self.max_target_positions | |
return self.max_target_positions | |
def buffered_future_mask(self, tensor): | |
dim = tensor.size(0) | |
# self._future_mask.device != tensor.device is not working in TorchScript. This is a workaround. | |
if ( | |
self._future_mask.size(0) == 0 | |
or (not self._future_mask.device == tensor.device) | |
or self._future_mask.size(0) < dim | |
): | |
self._future_mask = torch.triu( | |
utils.fill_with_neg_inf(torch.zeros([dim, dim])), 1 | |
) | |
self._future_mask = self._future_mask.to(tensor) | |
return self._future_mask[:dim, :dim] | |
def upgrade_state_dict_named(self, state_dict, name): | |
"""Upgrade a (possibly old) state dict for new versions of fairseq.""" | |
if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): | |
weights_key = "{}.embed_positions.weights".format(name) | |
if weights_key in state_dict: | |
del state_dict[weights_key] | |
state_dict[ | |
"{}.embed_positions._float_tensor".format(name) | |
] = torch.FloatTensor(1) | |
if f"{name}.output_projection.weight" not in state_dict: | |
if self.share_input_output_embed: | |
embed_out_key = f"{name}.embed_tokens.weight" | |
else: | |
embed_out_key = f"{name}.embed_out" | |
if embed_out_key in state_dict: | |
state_dict[f"{name}.output_projection.weight"] = state_dict[ | |
embed_out_key | |
] | |
if not self.share_input_output_embed: | |
del state_dict[embed_out_key] | |
for i in range(self.num_layers): | |
# update layer norms | |
self.layers[i].upgrade_state_dict_named( | |
state_dict, "{}.layers.{}".format(name, i) | |
) | |
prefix = name + "." if name != "" else "" | |
image_params = ["image_position_idx"] | |
for image_param in image_params: | |
state_dict[prefix + image_param] = self.state_dict()[image_param] | |
for param_name, param_tensor in self.state_dict().items(): | |
if (prefix + param_name) not in state_dict: | |
state_dict[prefix + param_name] = self.state_dict()[param_name] | |
if len(state_dict["decoder.embed_image_positions.weight"]) < len(self.state_dict()["embed_image_positions.weight"]): | |
num_posids_to_add = len(self.state_dict()["embed_image_positions.weight"]) - len(state_dict["decoder.embed_image_positions.weight"]) | |
embed_dim = state_dict["decoder.embed_image_positions.weight"].size(1) | |
new_pos_embed_to_add = torch.zeros(num_posids_to_add, embed_dim) | |
nn.init.normal_(new_pos_embed_to_add, mean=0, std=embed_dim ** -0.5) | |
new_pos_embed_to_add = new_pos_embed_to_add.to( | |
dtype=state_dict["decoder.embed_image_positions.weight"].dtype, | |
) | |
state_dict["decoder.embed_image_positions.weight"] = torch.cat( | |
[state_dict["decoder.embed_image_positions.weight"], new_pos_embed_to_add] | |
) | |
return state_dict | |
def Embedding(num_embeddings, embedding_dim, padding_idx=None, zero_init=False): | |
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) | |
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) | |
if padding_idx is not None: | |
nn.init.constant_(m.weight[padding_idx], 0) | |
if zero_init: | |
nn.init.constant_(m.weight, 0) | |
return m | |
def Linear(in_features, out_features, bias=True): | |
m = nn.Linear(in_features, out_features, bias) | |
nn.init.xavier_uniform_(m.weight) | |
if bias: | |
nn.init.constant_(m.bias, 0.0) | |
return m | |
def base_architecture(args): | |
args.encoder_embed_path = getattr(args, "encoder_embed_path", None) | |
args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) | |
args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) | |
args.encoder_layers = getattr(args, "encoder_layers", 6) | |
args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 8) | |
args.encoder_normalize_before = getattr(args, "encoder_normalize_before", False) | |
args.encoder_learned_pos = getattr(args, "encoder_learned_pos", False) | |
args.decoder_embed_path = getattr(args, "decoder_embed_path", None) | |
args.decoder_embed_dim = getattr(args, "decoder_embed_dim", args.encoder_embed_dim) | |
args.decoder_ffn_embed_dim = getattr( | |
args, "decoder_ffn_embed_dim", args.encoder_ffn_embed_dim | |
) | |
args.decoder_layers = getattr(args, "decoder_layers", 6) | |
args.decoder_attention_heads = getattr(args, "decoder_attention_heads", 8) | |
args.decoder_normalize_before = getattr(args, "decoder_normalize_before", False) | |
args.decoder_learned_pos = getattr(args, "decoder_learned_pos", False) | |
args.attention_dropout = getattr(args, "attention_dropout", 0.0) | |
args.activation_dropout = getattr(args, "activation_dropout", 0.0) | |
args.activation_fn = getattr(args, "activation_fn", "relu") | |
args.dropout = getattr(args, "dropout", 0.1) | |
args.adaptive_softmax_cutoff = getattr(args, "adaptive_softmax_cutoff", None) | |
args.adaptive_softmax_dropout = getattr(args, "adaptive_softmax_dropout", 0) | |
args.share_decoder_input_output_embed = getattr( | |
args, "share_decoder_input_output_embed", False | |
) | |
args.share_all_embeddings = getattr(args, "share_all_embeddings", False) | |
args.no_token_positional_embeddings = getattr( | |
args, "no_token_positional_embeddings", False | |
) | |
args.adaptive_input = getattr(args, "adaptive_input", False) | |
args.no_cross_attention = getattr(args, "no_cross_attention", False) | |
args.cross_self_attention = getattr(args, "cross_self_attention", False) | |
args.decoder_output_dim = getattr( | |
args, "decoder_output_dim", args.decoder_embed_dim | |
) | |
args.decoder_input_dim = getattr(args, "decoder_input_dim", args.decoder_embed_dim) | |
args.no_scale_embedding = getattr(args, "no_scale_embedding", False) | |
args.layernorm_embedding = getattr(args, "layernorm_embedding", False) | |
args.tie_adaptive_weights = getattr(args, "tie_adaptive_weights", False) | |
args.checkpoint_activations = getattr(args, "checkpoint_activations", False) | |
args.offload_activations = getattr(args, "offload_activations", False) | |
if args.offload_activations: | |
args.checkpoint_activations = True | |
args.encoder_layers_to_keep = getattr(args, "encoder_layers_to_keep", None) | |
args.decoder_layers_to_keep = getattr(args, "decoder_layers_to_keep", None) | |
args.encoder_layerdrop = getattr(args, "encoder_layerdrop", 0) | |
args.decoder_layerdrop = getattr(args, "decoder_layerdrop", 0) | |
args.quant_noise_pq = getattr(args, "quant_noise_pq", 0) | |
args.quant_noise_pq_block_size = getattr(args, "quant_noise_pq_block_size", 8) | |
args.quant_noise_scalar = getattr(args, "quant_noise_scalar", 0) | |
class MLP(nn.Module): | |
""" Very simple multi-layer perceptron (also called FFN)""" | |
def __init__(self, input_dim, hidden_dim, output_dim, num_layers): | |
super().__init__() | |
self.num_layers = num_layers | |
h = [hidden_dim] * (num_layers - 1) | |
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) | |
def forward(self, x): | |
for i, layer in enumerate(self.layers): | |
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) | |
return x | |