#!/bin/bash # The port for communication. Note that if you want to run multiple tasks on the same machine, # you need to specify different port numbers. export MASTER_PORT=6092 export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 export GPUS_PER_NODE=8 ########################## Evaluate Refcoco+ ########################## user_dir=../../polyformer_module bpe_dir=../../utils/BPE selected_cols=0,5,6,2,4,3 model='polyformer_b' num_bins=64 batch_size=16 dataset='refcocog' ckpt_path=../../weights/polyformer_b_refcocog.pt for split in 'refcocog_val' 'refcocog_test' do data=../../datasets/finetune/${dataset}/${split}.tsv result_path=../../results_${model}/${dataset}/ vis_dir=${result_path}/vis/${split} result_dir=${result_path}/result/${split} python3 -m torch.distributed.launch --nproc_per_node=${GPUS_PER_NODE} --master_port=${MASTER_PORT} ../../evaluate.py \ ${data} \ --path=${ckpt_path} \ --user-dir=${user_dir} \ --task=refcoco \ --batch-size=${batch_size} \ --log-format=simple --log-interval=10 \ --seed=7 \ --gen-subset=${split} \ --results-path=${result_path} \ --no-repeat-ngram-size=3 \ --fp16 \ --num-workers=0 \ --num-bins=${num_bins} \ --vis_dir=${vis_dir} \ --result_dir=${result_dir} \ --model-overrides="{\"data\":\"${data}\",\"bpe_dir\":\"${bpe_dir}\",\"selected_cols\":\"${selected_cols}\"}" done