Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import matplotlib.pyplot as plt | |
import cv2 | |
import kornia as K | |
import kornia.feature as KF | |
import numpy as np | |
import torch | |
from kornia_moons.feature import * | |
from kornia_moons.viz import * | |
import gradio as gr | |
def load_torch_image(img): | |
if isinstance(img, np.ndarray): | |
# If the input is already a numpy array, convert it to a tensor | |
img_tensor = K.image_to_tensor(img).float() / 255.0 | |
else: | |
# If it's a file path, load it using kornia | |
img_tensor = K.io.load_image(img, K.io.ImageLoadType.RGB32) | |
img_tensor = img_tensor.unsqueeze(0) # Add batch dimension: 1xCxHxW | |
img_tensor = K.geometry.resize(img_tensor, (700, 700)) | |
return img_tensor | |
def inference(img1, img2): | |
img1_tensor = load_torch_image(img1) | |
img2_tensor = load_torch_image(img2) | |
matcher = KF.LoFTR(pretrained='outdoor') | |
input_dict = { | |
"image0": K.color.rgb_to_grayscale(img1_tensor), # LoFTR works on grayscale images only | |
"image1": K.color.rgb_to_grayscale(img2_tensor) | |
} | |
with torch.no_grad(): | |
correspondences = matcher(input_dict) | |
mkpts0 = correspondences['keypoints0'].cpu().numpy() | |
mkpts1 = correspondences['keypoints1'].cpu().numpy() | |
H, inliers = cv2.findFundamentalMat(mkpts0, mkpts1, cv2.USAC_MAGSAC, 0.5, 0.999, 100000) | |
inliers = inliers > 0 | |
fig, ax = plt.subplots() | |
draw_LAF_matches( | |
KF.laf_from_center_scale_ori(torch.from_numpy(mkpts0).view(1,-1, 2), | |
torch.ones(mkpts0.shape[0]).view(1,-1, 1, 1), | |
torch.ones(mkpts0.shape[0]).view(1,-1, 1)), | |
KF.laf_from_center_scale_ori(torch.from_numpy(mkpts1).view(1,-1, 2), | |
torch.ones(mkpts1.shape[0]).view(1,-1, 1, 1), | |
torch.ones(mkpts1.shape[0]).view(1,-1, 1)), | |
torch.arange(mkpts0.shape[0]).view(-1,1).repeat(1,2), | |
K.tensor_to_image(img1_tensor.squeeze()), | |
K.tensor_to_image(img2_tensor.squeeze()), | |
inliers, | |
draw_dict={'inlier_color': (0.2, 1, 0.2), | |
'tentative_color': None, | |
'feature_color': (0.2, 0.5, 1), 'vertical': False}, | |
ax=ax | |
) | |
plt.axis('off') | |
return fig | |
title = "Kornia-Loftr" | |
description = "Gradio demo for Kornia-Loftr: Detector-Free Local Feature Matching with Transformers. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below." | |
article = "<p style='text-align: center'><a href='https://kornia.readthedocs.io/en/latest/' target='_blank'>Open Source Differentiable Computer Vision Library</a> | <a href='https://github.com/kornia/kornia' target='_blank'>Kornia Github Repo</a> | <a href='https://github.com/zju3dv/LoFTR' target='_blank'>LoFTR Github</a> | <a href='https://arxiv.org/abs/2104.00680' target='_blank'>LoFTR: Detector-Free Local Feature Matching with Transformers</a></p>" | |
css = ".output_image, .input_image {height: 40rem !important; width: 100% !important;}" | |
examples = [['kn_church-2.jpg','kn_church-8.jpg']] | |
iface = gr.Interface( | |
inference, | |
[ | |
gr.Image(type="numpy", label="Input1"), | |
gr.Image(type="numpy", label="Input2")], | |
gr.Plot(label="Feature Matches"), | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
css=css | |
) | |
iface.launch(debug=True) |