mischeiwiller commited on
Commit
e43d011
1 Parent(s): cd899a2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -8
app.py CHANGED
@@ -5,6 +5,7 @@ import cv2
5
  import numpy as np
6
  import matplotlib.pyplot as plt
7
  from scipy.cluster.vq import kmeans
 
8
 
9
  def get_coordinates_from_mask(mask_in):
10
  x_y = np.where(mask_in != [0,0,0,255])[:2]
@@ -32,8 +33,13 @@ def sort_centroids_clockwise(centroids: np.ndarray):
32
  return top_left, top_right, bottom_right, bottom_left
33
 
34
  def infer(image_input, dst_height: str, dst_width: str):
35
- image_in = image_input["image"]
36
- mask_in = image_input["mask"]
 
 
 
 
 
37
  torch_img = K.utils.image_to_tensor(image_in).float() / 255.0
38
 
39
  centroids = get_coordinates_from_mask(mask_in)
@@ -76,16 +82,15 @@ description = """In this space you can warp an image using perspective transform
76
  4. Click Submit to run the demo
77
  """
78
 
79
- example_mask = np.zeros((327, 600, 4), dtype=np.uint8)
80
- example_mask[:, :, 3] = 255
81
- example_image_dict = {"image": "bruce.png", "mask": example_mask}
82
 
83
  inputs = [
84
- gr.Image(type="numpy", label="Input Image"),
85
  gr.Textbox(label="Destination Height", value="64"),
86
  gr.Textbox(label="Destination Width", value="128"),
87
  ]
88
-
89
  outputs = gr.Plot(label="Output")
90
 
91
  gr.Interface(
@@ -94,6 +99,6 @@ gr.Interface(
94
  outputs=outputs,
95
  title="Homography Warping",
96
  description=description,
97
- examples=[[example_image_dict, "64", "128"]],
98
  cache_examples=True
99
  ).launch()
 
5
  import numpy as np
6
  import matplotlib.pyplot as plt
7
  from scipy.cluster.vq import kmeans
8
+ from PIL import Image
9
 
10
  def get_coordinates_from_mask(mask_in):
11
  x_y = np.where(mask_in != [0,0,0,255])[:2]
 
33
  return top_left, top_right, bottom_right, bottom_left
34
 
35
  def infer(image_input, dst_height: str, dst_width: str):
36
+ if isinstance(image_input, dict):
37
+ image_in = image_input["image"]
38
+ mask_in = image_input["mask"]
39
+ else:
40
+ image_in = image_input
41
+ mask_in = np.zeros_like(image_in)
42
+
43
  torch_img = K.utils.image_to_tensor(image_in).float() / 255.0
44
 
45
  centroids = get_coordinates_from_mask(mask_in)
 
82
  4. Click Submit to run the demo
83
  """
84
 
85
+ # Load the example image
86
+ example_image = Image.open("bruce.png")
87
+ example_image_np = np.array(example_image)
88
 
89
  inputs = [
90
+ gr.Image(type="numpy", label="Input Image", tool="sketch"),
91
  gr.Textbox(label="Destination Height", value="64"),
92
  gr.Textbox(label="Destination Width", value="128"),
93
  ]
 
94
  outputs = gr.Plot(label="Output")
95
 
96
  gr.Interface(
 
99
  outputs=outputs,
100
  title="Homography Warping",
101
  description=description,
102
+ examples=[[example_image_np, "64", "128"]],
103
  cache_examples=True
104
  ).launch()