import gradio as gr import torch import kornia as K import cv2 import numpy as np import matplotlib.pyplot as plt from scipy.cluster.vq import kmeans def get_coordinates_from_mask(mask_in): x_y = np.where(mask_in != [0,0,0,255])[:2] x_y = np.column_stack((x_y[1], x_y[0])) x_y = np.float32(x_y) centroids,_ = kmeans(x_y,4) centroids = np.int64(centroids) return centroids def get_top_bottom_coordinates(coords): top_coord = min(coords, key=lambda x : x[1]) bottom_coord = max(coords, key=lambda x : x[1]) return top_coord, bottom_coord def sort_centroids_clockwise(centroids: np.ndarray): c_list = centroids.tolist() c_list.sort(key = lambda y : y[0]) left_coords = c_list[:2] right_coords = c_list[-2:] top_left, bottom_left = get_top_bottom_coordinates(left_coords) top_right, bottom_right = get_top_bottom_coordinates(right_coords) return top_left, top_right, bottom_right, bottom_left def infer(image_input, dst_height: str, dst_width: str): image_in = image_input["image"] mask_in = image_input["mask"] torch_img = K.utils.image_to_tensor(image_in).float() / 255.0 centroids = get_coordinates_from_mask(mask_in) ordered_src_coords = sort_centroids_clockwise(centroids) # the source points are the region to crop corners points_src = torch.tensor([list(ordered_src_coords)], dtype=torch.float32) # the destination points are the image vertexes h, w = int(dst_height), int(dst_width) # destination size points_dst = torch.tensor([[ [0., 0.], [w - 1., 0.], [w - 1., h - 1.], [0., h - 1.], ]], dtype=torch.float32) # compute perspective transform M: torch.tensor = K.geometry.transform.get_perspective_transform(points_src, points_dst) # warp the original image by the found transform torch_img = torch.stack([torch_img],) img_warp: torch.tensor = K.geometry.transform.warp_perspective(torch_img, M, dsize=(h, w)) # convert back to numpy img_np = K.utils.tensor_to_image(torch_img[0]) img_warp_np: np.ndarray = K.utils.tensor_to_image(img_warp[0]) # draw points into original image for i in range(4): center = tuple(points_src[0, i].long().numpy()) img_np = cv2.circle(img_np.copy(), center, 5, (0, 255, 0), -1) # create the plot fig, axs = plt.subplots(1, 2, figsize=(16, 10)) axs = axs.ravel() axs[0].axis('off') axs[0].set_title('image source') axs[0].imshow(img_np) axs[1].axis('off') axs[1].set_title('image destination') axs[1].imshow(img_warp_np) return fig description = """In this space you can warp an image using perspective transform with the Kornia library as seen in [this tutorial](https://kornia.github.io/tutorials/#category=Homography). 1. Upload an image or use the example provided 2. Set 4 points into the image with your cursor, which define the area to warp 3. Set a desired output size (or go with the default) 4. Click Submit to run the demo """ example_mask = np.zeros((327, 600, 4), dtype=np.uint8) example_mask[:, :, 3] = 255 example_image_dict = {"image": "bruce.png", "mask": example_mask} with gr.Blocks() as demo: gr.Markdown("# Homography Warping") gr.Markdown(description) with gr.Row(): image_input = gr.Image(tool="sketch", type="numpy", label="Input Image") output_plot = gr.Plot(label="Output") with gr.Row(): dst_height = gr.Textbox(label="Destination Height", value="64") dst_width = gr.Textbox(label="Destination Width", value="128") submit_button = gr.Button("Submit") submit_button.click( fn=infer, inputs=[image_input, dst_height, dst_width], outputs=output_plot ) gr.Examples( examples=[[example_image_dict, "64", "128"]], inputs=[image_input, dst_height, dst_width], outputs=output_plot, fn=infer, cache_examples=True ) if __name__ == "__main__": demo.launch()