Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Johannes
commited on
Commit
β’
29421eb
1
Parent(s):
5c0df9c
init
Browse files- README.md +1 -1
- app.py +86 -0
- collect_env.py +492 -0
- plot_utils.py +107 -0
- requirements.txt +3 -0
- terrace0.JPG +0 -0
- terrace1.JPG +0 -0
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
title: Line Segment Matching
|
3 |
-
emoji:
|
4 |
colorFrom: indigo
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
|
|
1 |
---
|
2 |
title: Line Segment Matching
|
3 |
+
emoji: π
|
4 |
colorFrom: indigo
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import kornia as K
|
3 |
+
import kornia.feature as KF
|
4 |
+
import torch
|
5 |
+
import matplotlib
|
6 |
+
matplotlib.use('Agg')
|
7 |
+
import numpy as np
|
8 |
+
from plot_utils import plot_images, plot_lines, plot_color_line_matches
|
9 |
+
|
10 |
+
sold2 = KF.SOLD2(pretrained=True, config=None)
|
11 |
+
ransac = K.geometry.RANSAC(model_type="homography", inl_th=3.0)
|
12 |
+
|
13 |
+
|
14 |
+
def infer(img1, img2, line_style: str):
|
15 |
+
torch_img1 = K.image_to_tensor(img1).float() / 255.0
|
16 |
+
torch_img2 = K.image_to_tensor(img2).float() / 255.0
|
17 |
+
|
18 |
+
torch_img1_gray = K.color.rgb_to_grayscale(torch_img1)
|
19 |
+
torch_img2_gray = K.color.rgb_to_grayscale(torch_img2)
|
20 |
+
|
21 |
+
imgs = torch.stack([torch_img1_gray, torch_img2_gray],)
|
22 |
+
|
23 |
+
with torch.inference_mode():
|
24 |
+
outputs = sold2(imgs)
|
25 |
+
|
26 |
+
line_seg1 = outputs["line_segments"][0]
|
27 |
+
line_seg2 = outputs["line_segments"][1]
|
28 |
+
desc1 = outputs["dense_desc"][0]
|
29 |
+
desc2 = outputs["dense_desc"][1]
|
30 |
+
|
31 |
+
with torch.inference_mode():
|
32 |
+
matches = sold2.match(line_seg1, line_seg2, desc1[None], desc2[None])
|
33 |
+
|
34 |
+
valid_matches = matches != -1
|
35 |
+
match_indices = matches[valid_matches]
|
36 |
+
|
37 |
+
matched_lines1 = line_seg1[valid_matches]
|
38 |
+
matched_lines2 = line_seg2[match_indices]
|
39 |
+
|
40 |
+
imgs_to_plot = [K.tensor_to_image(torch_img1), K.tensor_to_image(torch_img2)]
|
41 |
+
|
42 |
+
fig = plot_images(imgs_to_plot, ["Image 1 - detected lines", "Image 2 - detected lines"])
|
43 |
+
if line_style == "Line Matches":
|
44 |
+
lines_to_plot = [line_seg1.numpy(), line_seg2.numpy()]
|
45 |
+
plot_lines(lines_to_plot, fig, ps=3, lw=2, indices={0, 1})
|
46 |
+
elif line_style == "Color Line Matches":
|
47 |
+
plot_color_line_matches([matched_lines1, matched_lines2], fig, lw=2)
|
48 |
+
# elif line_style == "Line Segment Homography Warping":
|
49 |
+
# H_ransac, correspondence_mask = ransac(
|
50 |
+
# matched_lines1.flip(dims=(2,)), matched_lines2.flip(dims=(2,))
|
51 |
+
# )
|
52 |
+
# img1_warp_to2 = K.geometry.warp_perspective(
|
53 |
+
# torch_img1[None], H_ransac[None], (torch_img1.shape[1:])
|
54 |
+
# )
|
55 |
+
# fig = plot_images(
|
56 |
+
# [K.tensor_to_image(torch_img2), K.tensor_to_image(img1_warp_to2)],
|
57 |
+
# ["Image 2", "Image 1 wrapped to 2"],
|
58 |
+
# )
|
59 |
+
return fig
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
description = """Line Segment Matching with Kornia
|
64 |
+
|
65 |
+
In this space you can try out Line Segment Matching with the Kornia library as seen in [this tutorial](https://kornia-tutorials.readthedocs.io/en/latest/line_detection_and_matching_sold2.html).
|
66 |
+
|
67 |
+
Just upload two images of a scene with different view points, choose an option for output and run the demo.
|
68 |
+
"""
|
69 |
+
|
70 |
+
|
71 |
+
Iface = gr.Interface(
|
72 |
+
fn=infer,
|
73 |
+
inputs=[gr.components.Image(),
|
74 |
+
gr.components.Image(),
|
75 |
+
gr.components.Dropdown(["Line Matches",
|
76 |
+
"Color Line Matches",
|
77 |
+
#"Line Segment Homography Warping",
|
78 |
+
],
|
79 |
+
value="Line Matches",
|
80 |
+
label="Options"),
|
81 |
+
],
|
82 |
+
outputs=gr.components.Plot(),
|
83 |
+
examples=[["terrace0.JPG", "terrace1.JPG"]],
|
84 |
+
title="Line Segment Matching with Kornia",
|
85 |
+
description=description,
|
86 |
+
).launch()
|
collect_env.py
ADDED
@@ -0,0 +1,492 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import print_function
|
2 |
+
|
3 |
+
# Unlike the rest of the PyTorch this file must be python2 compliant.
|
4 |
+
# This script outputs relevant system environment info
|
5 |
+
# Run it with `python collect_env.py`.
|
6 |
+
import datetime
|
7 |
+
import locale
|
8 |
+
import re
|
9 |
+
import subprocess
|
10 |
+
import sys
|
11 |
+
import os
|
12 |
+
from collections import namedtuple
|
13 |
+
|
14 |
+
|
15 |
+
try:
|
16 |
+
import torch
|
17 |
+
TORCH_AVAILABLE = True
|
18 |
+
except (ImportError, NameError, AttributeError, OSError):
|
19 |
+
TORCH_AVAILABLE = False
|
20 |
+
|
21 |
+
# System Environment Information
|
22 |
+
SystemEnv = namedtuple('SystemEnv', [
|
23 |
+
'torch_version',
|
24 |
+
'is_debug_build',
|
25 |
+
'cuda_compiled_version',
|
26 |
+
'gcc_version',
|
27 |
+
'clang_version',
|
28 |
+
'cmake_version',
|
29 |
+
'os',
|
30 |
+
'libc_version',
|
31 |
+
'python_version',
|
32 |
+
'python_platform',
|
33 |
+
'is_cuda_available',
|
34 |
+
'cuda_runtime_version',
|
35 |
+
'nvidia_driver_version',
|
36 |
+
'nvidia_gpu_models',
|
37 |
+
'cudnn_version',
|
38 |
+
'pip_version', # 'pip' or 'pip3'
|
39 |
+
'pip_packages',
|
40 |
+
'conda_packages',
|
41 |
+
'hip_compiled_version',
|
42 |
+
'hip_runtime_version',
|
43 |
+
'miopen_runtime_version',
|
44 |
+
'caching_allocator_config',
|
45 |
+
'is_xnnpack_available',
|
46 |
+
])
|
47 |
+
|
48 |
+
|
49 |
+
def run(command):
|
50 |
+
"""Returns (return-code, stdout, stderr)"""
|
51 |
+
p = subprocess.Popen(command, stdout=subprocess.PIPE,
|
52 |
+
stderr=subprocess.PIPE, shell=True)
|
53 |
+
raw_output, raw_err = p.communicate()
|
54 |
+
rc = p.returncode
|
55 |
+
if get_platform() == 'win32':
|
56 |
+
enc = 'oem'
|
57 |
+
else:
|
58 |
+
enc = locale.getpreferredencoding()
|
59 |
+
output = raw_output.decode(enc)
|
60 |
+
err = raw_err.decode(enc)
|
61 |
+
return rc, output.strip(), err.strip()
|
62 |
+
|
63 |
+
|
64 |
+
def run_and_read_all(run_lambda, command):
|
65 |
+
"""Runs command using run_lambda; reads and returns entire output if rc is 0"""
|
66 |
+
rc, out, _ = run_lambda(command)
|
67 |
+
if rc != 0:
|
68 |
+
return None
|
69 |
+
return out
|
70 |
+
|
71 |
+
|
72 |
+
def run_and_parse_first_match(run_lambda, command, regex):
|
73 |
+
"""Runs command using run_lambda, returns the first regex match if it exists"""
|
74 |
+
rc, out, _ = run_lambda(command)
|
75 |
+
if rc != 0:
|
76 |
+
return None
|
77 |
+
match = re.search(regex, out)
|
78 |
+
if match is None:
|
79 |
+
return None
|
80 |
+
return match.group(1)
|
81 |
+
|
82 |
+
def run_and_return_first_line(run_lambda, command):
|
83 |
+
"""Runs command using run_lambda and returns first line if output is not empty"""
|
84 |
+
rc, out, _ = run_lambda(command)
|
85 |
+
if rc != 0:
|
86 |
+
return None
|
87 |
+
return out.split('\n')[0]
|
88 |
+
|
89 |
+
|
90 |
+
def get_conda_packages(run_lambda):
|
91 |
+
conda = os.environ.get('CONDA_EXE', 'conda')
|
92 |
+
out = run_and_read_all(run_lambda, "{} list".format(conda))
|
93 |
+
if out is None:
|
94 |
+
return out
|
95 |
+
|
96 |
+
return "\n".join(
|
97 |
+
line
|
98 |
+
for line in out.splitlines()
|
99 |
+
if not line.startswith("#")
|
100 |
+
and any(
|
101 |
+
name in line
|
102 |
+
for name in {
|
103 |
+
"torch",
|
104 |
+
"numpy",
|
105 |
+
"cudatoolkit",
|
106 |
+
"soumith",
|
107 |
+
"mkl",
|
108 |
+
"magma",
|
109 |
+
"mkl",
|
110 |
+
}
|
111 |
+
)
|
112 |
+
)
|
113 |
+
|
114 |
+
def get_gcc_version(run_lambda):
|
115 |
+
return run_and_parse_first_match(run_lambda, 'gcc --version', r'gcc (.*)')
|
116 |
+
|
117 |
+
def get_clang_version(run_lambda):
|
118 |
+
return run_and_parse_first_match(run_lambda, 'clang --version', r'clang version (.*)')
|
119 |
+
|
120 |
+
|
121 |
+
def get_cmake_version(run_lambda):
|
122 |
+
return run_and_parse_first_match(run_lambda, 'cmake --version', r'cmake (.*)')
|
123 |
+
|
124 |
+
|
125 |
+
def get_nvidia_driver_version(run_lambda):
|
126 |
+
if get_platform() == 'darwin':
|
127 |
+
cmd = 'kextstat | grep -i cuda'
|
128 |
+
return run_and_parse_first_match(run_lambda, cmd,
|
129 |
+
r'com[.]nvidia[.]CUDA [(](.*?)[)]')
|
130 |
+
smi = get_nvidia_smi()
|
131 |
+
return run_and_parse_first_match(run_lambda, smi, r'Driver Version: (.*?) ')
|
132 |
+
|
133 |
+
|
134 |
+
def get_gpu_info(run_lambda):
|
135 |
+
if get_platform() == 'darwin' or (TORCH_AVAILABLE and hasattr(torch.version, 'hip') and torch.version.hip is not None):
|
136 |
+
if TORCH_AVAILABLE and torch.cuda.is_available():
|
137 |
+
return torch.cuda.get_device_name(None)
|
138 |
+
return None
|
139 |
+
smi = get_nvidia_smi()
|
140 |
+
uuid_regex = re.compile(r' \(UUID: .+?\)')
|
141 |
+
rc, out, _ = run_lambda(smi + ' -L')
|
142 |
+
if rc != 0:
|
143 |
+
return None
|
144 |
+
# Anonymize GPUs by removing their UUID
|
145 |
+
return re.sub(uuid_regex, '', out)
|
146 |
+
|
147 |
+
|
148 |
+
def get_running_cuda_version(run_lambda):
|
149 |
+
return run_and_parse_first_match(run_lambda, 'nvcc --version', r'release .+ V(.*)')
|
150 |
+
|
151 |
+
|
152 |
+
def get_cudnn_version(run_lambda):
|
153 |
+
"""This will return a list of libcudnn.so; it's hard to tell which one is being used"""
|
154 |
+
if get_platform() == 'win32':
|
155 |
+
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
|
156 |
+
cuda_path = os.environ.get('CUDA_PATH', "%CUDA_PATH%")
|
157 |
+
where_cmd = os.path.join(system_root, 'System32', 'where')
|
158 |
+
cudnn_cmd = '{} /R "{}\\bin" cudnn*.dll'.format(where_cmd, cuda_path)
|
159 |
+
elif get_platform() == 'darwin':
|
160 |
+
# CUDA libraries and drivers can be found in /usr/local/cuda/. See
|
161 |
+
# https://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#install
|
162 |
+
# https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installmac
|
163 |
+
# Use CUDNN_LIBRARY when cudnn library is installed elsewhere.
|
164 |
+
cudnn_cmd = 'ls /usr/local/cuda/lib/libcudnn*'
|
165 |
+
else:
|
166 |
+
cudnn_cmd = 'ldconfig -p | grep libcudnn | rev | cut -d" " -f1 | rev'
|
167 |
+
rc, out, _ = run_lambda(cudnn_cmd)
|
168 |
+
# find will return 1 if there are permission errors or if not found
|
169 |
+
if len(out) == 0 or (rc != 1 and rc != 0):
|
170 |
+
l = os.environ.get('CUDNN_LIBRARY')
|
171 |
+
if l is not None and os.path.isfile(l):
|
172 |
+
return os.path.realpath(l)
|
173 |
+
return None
|
174 |
+
files_set = set()
|
175 |
+
for fn in out.split('\n'):
|
176 |
+
fn = os.path.realpath(fn) # eliminate symbolic links
|
177 |
+
if os.path.isfile(fn):
|
178 |
+
files_set.add(fn)
|
179 |
+
if not files_set:
|
180 |
+
return None
|
181 |
+
# Alphabetize the result because the order is non-deterministic otherwise
|
182 |
+
files = list(sorted(files_set))
|
183 |
+
if len(files) == 1:
|
184 |
+
return files[0]
|
185 |
+
result = '\n'.join(files)
|
186 |
+
return 'Probably one of the following:\n{}'.format(result)
|
187 |
+
|
188 |
+
|
189 |
+
def get_nvidia_smi():
|
190 |
+
# Note: nvidia-smi is currently available only on Windows and Linux
|
191 |
+
smi = 'nvidia-smi'
|
192 |
+
if get_platform() == 'win32':
|
193 |
+
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
|
194 |
+
program_files_root = os.environ.get('PROGRAMFILES', 'C:\\Program Files')
|
195 |
+
legacy_path = os.path.join(program_files_root, 'NVIDIA Corporation', 'NVSMI', smi)
|
196 |
+
new_path = os.path.join(system_root, 'System32', smi)
|
197 |
+
smis = [new_path, legacy_path]
|
198 |
+
for candidate_smi in smis:
|
199 |
+
if os.path.exists(candidate_smi):
|
200 |
+
smi = '"{}"'.format(candidate_smi)
|
201 |
+
break
|
202 |
+
return smi
|
203 |
+
|
204 |
+
|
205 |
+
def get_platform():
|
206 |
+
if sys.platform.startswith('linux'):
|
207 |
+
return 'linux'
|
208 |
+
elif sys.platform.startswith('win32'):
|
209 |
+
return 'win32'
|
210 |
+
elif sys.platform.startswith('cygwin'):
|
211 |
+
return 'cygwin'
|
212 |
+
elif sys.platform.startswith('darwin'):
|
213 |
+
return 'darwin'
|
214 |
+
else:
|
215 |
+
return sys.platform
|
216 |
+
|
217 |
+
|
218 |
+
def get_mac_version(run_lambda):
|
219 |
+
return run_and_parse_first_match(run_lambda, 'sw_vers -productVersion', r'(.*)')
|
220 |
+
|
221 |
+
|
222 |
+
def get_windows_version(run_lambda):
|
223 |
+
system_root = os.environ.get('SYSTEMROOT', 'C:\\Windows')
|
224 |
+
wmic_cmd = os.path.join(system_root, 'System32', 'Wbem', 'wmic')
|
225 |
+
findstr_cmd = os.path.join(system_root, 'System32', 'findstr')
|
226 |
+
return run_and_read_all(run_lambda, '{} os get Caption | {} /v Caption'.format(wmic_cmd, findstr_cmd))
|
227 |
+
|
228 |
+
|
229 |
+
def get_lsb_version(run_lambda):
|
230 |
+
return run_and_parse_first_match(run_lambda, 'lsb_release -a', r'Description:\t(.*)')
|
231 |
+
|
232 |
+
|
233 |
+
def check_release_file(run_lambda):
|
234 |
+
return run_and_parse_first_match(run_lambda, 'cat /etc/*-release',
|
235 |
+
r'PRETTY_NAME="(.*)"')
|
236 |
+
|
237 |
+
|
238 |
+
def get_os(run_lambda):
|
239 |
+
from platform import machine
|
240 |
+
platform = get_platform()
|
241 |
+
|
242 |
+
if platform == 'win32' or platform == 'cygwin':
|
243 |
+
return get_windows_version(run_lambda)
|
244 |
+
|
245 |
+
if platform == 'darwin':
|
246 |
+
version = get_mac_version(run_lambda)
|
247 |
+
if version is None:
|
248 |
+
return None
|
249 |
+
return 'macOS {} ({})'.format(version, machine())
|
250 |
+
|
251 |
+
if platform == 'linux':
|
252 |
+
# Ubuntu/Debian based
|
253 |
+
desc = get_lsb_version(run_lambda)
|
254 |
+
if desc is not None:
|
255 |
+
return '{} ({})'.format(desc, machine())
|
256 |
+
|
257 |
+
# Try reading /etc/*-release
|
258 |
+
desc = check_release_file(run_lambda)
|
259 |
+
if desc is not None:
|
260 |
+
return '{} ({})'.format(desc, machine())
|
261 |
+
|
262 |
+
return '{} ({})'.format(platform, machine())
|
263 |
+
|
264 |
+
# Unknown platform
|
265 |
+
return platform
|
266 |
+
|
267 |
+
|
268 |
+
def get_python_platform():
|
269 |
+
import platform
|
270 |
+
return platform.platform()
|
271 |
+
|
272 |
+
|
273 |
+
def get_libc_version():
|
274 |
+
import platform
|
275 |
+
if get_platform() != 'linux':
|
276 |
+
return 'N/A'
|
277 |
+
return '-'.join(platform.libc_ver())
|
278 |
+
|
279 |
+
|
280 |
+
def get_pip_packages(run_lambda):
|
281 |
+
"""Returns `pip list` output. Note: will also find conda-installed pytorch
|
282 |
+
and numpy packages."""
|
283 |
+
# People generally have `pip` as `pip` or `pip3`
|
284 |
+
# But here it is incoved as `python -mpip`
|
285 |
+
def run_with_pip(pip):
|
286 |
+
out = run_and_read_all(run_lambda, "{} list --format=freeze".format(pip))
|
287 |
+
return "\n".join(
|
288 |
+
line
|
289 |
+
for line in out.splitlines()
|
290 |
+
if any(
|
291 |
+
name in line
|
292 |
+
for name in {
|
293 |
+
"torch",
|
294 |
+
"numpy",
|
295 |
+
"mypy",
|
296 |
+
}
|
297 |
+
)
|
298 |
+
)
|
299 |
+
|
300 |
+
pip_version = 'pip3' if sys.version[0] == '3' else 'pip'
|
301 |
+
out = run_with_pip(sys.executable + ' -mpip')
|
302 |
+
|
303 |
+
return pip_version, out
|
304 |
+
|
305 |
+
|
306 |
+
def get_cachingallocator_config():
|
307 |
+
ca_config = os.environ.get('PYTORCH_CUDA_ALLOC_CONF', '')
|
308 |
+
return ca_config
|
309 |
+
|
310 |
+
def is_xnnpack_available():
|
311 |
+
if TORCH_AVAILABLE:
|
312 |
+
import torch.backends.xnnpack
|
313 |
+
return str(torch.backends.xnnpack.enabled) # type: ignore[attr-defined]
|
314 |
+
else:
|
315 |
+
return "N/A"
|
316 |
+
|
317 |
+
def get_env_info():
|
318 |
+
run_lambda = run
|
319 |
+
pip_version, pip_list_output = get_pip_packages(run_lambda)
|
320 |
+
|
321 |
+
if TORCH_AVAILABLE:
|
322 |
+
version_str = torch.__version__
|
323 |
+
debug_mode_str = str(torch.version.debug)
|
324 |
+
cuda_available_str = str(torch.cuda.is_available())
|
325 |
+
cuda_version_str = torch.version.cuda
|
326 |
+
if not hasattr(torch.version, 'hip') or torch.version.hip is None: # cuda version
|
327 |
+
hip_compiled_version = hip_runtime_version = miopen_runtime_version = 'N/A'
|
328 |
+
else: # HIP version
|
329 |
+
cfg = torch._C._show_config().split('\n')
|
330 |
+
hip_runtime_version = [s.rsplit(None, 1)[-1] for s in cfg if 'HIP Runtime' in s][0]
|
331 |
+
miopen_runtime_version = [s.rsplit(None, 1)[-1] for s in cfg if 'MIOpen' in s][0]
|
332 |
+
cuda_version_str = 'N/A'
|
333 |
+
hip_compiled_version = torch.version.hip
|
334 |
+
else:
|
335 |
+
version_str = debug_mode_str = cuda_available_str = cuda_version_str = 'N/A'
|
336 |
+
hip_compiled_version = hip_runtime_version = miopen_runtime_version = 'N/A'
|
337 |
+
|
338 |
+
sys_version = sys.version.replace("\n", " ")
|
339 |
+
|
340 |
+
return SystemEnv(
|
341 |
+
torch_version=version_str,
|
342 |
+
is_debug_build=debug_mode_str,
|
343 |
+
python_version='{} ({}-bit runtime)'.format(sys_version, sys.maxsize.bit_length() + 1),
|
344 |
+
python_platform=get_python_platform(),
|
345 |
+
is_cuda_available=cuda_available_str,
|
346 |
+
cuda_compiled_version=cuda_version_str,
|
347 |
+
cuda_runtime_version=get_running_cuda_version(run_lambda),
|
348 |
+
nvidia_gpu_models=get_gpu_info(run_lambda),
|
349 |
+
nvidia_driver_version=get_nvidia_driver_version(run_lambda),
|
350 |
+
cudnn_version=get_cudnn_version(run_lambda),
|
351 |
+
hip_compiled_version=hip_compiled_version,
|
352 |
+
hip_runtime_version=hip_runtime_version,
|
353 |
+
miopen_runtime_version=miopen_runtime_version,
|
354 |
+
pip_version=pip_version,
|
355 |
+
pip_packages=pip_list_output,
|
356 |
+
conda_packages=get_conda_packages(run_lambda),
|
357 |
+
os=get_os(run_lambda),
|
358 |
+
libc_version=get_libc_version(),
|
359 |
+
gcc_version=get_gcc_version(run_lambda),
|
360 |
+
clang_version=get_clang_version(run_lambda),
|
361 |
+
cmake_version=get_cmake_version(run_lambda),
|
362 |
+
caching_allocator_config=get_cachingallocator_config(),
|
363 |
+
is_xnnpack_available=is_xnnpack_available(),
|
364 |
+
)
|
365 |
+
|
366 |
+
env_info_fmt = """
|
367 |
+
PyTorch version: {torch_version}
|
368 |
+
Is debug build: {is_debug_build}
|
369 |
+
CUDA used to build PyTorch: {cuda_compiled_version}
|
370 |
+
ROCM used to build PyTorch: {hip_compiled_version}
|
371 |
+
|
372 |
+
OS: {os}
|
373 |
+
GCC version: {gcc_version}
|
374 |
+
Clang version: {clang_version}
|
375 |
+
CMake version: {cmake_version}
|
376 |
+
Libc version: {libc_version}
|
377 |
+
|
378 |
+
Python version: {python_version}
|
379 |
+
Python platform: {python_platform}
|
380 |
+
Is CUDA available: {is_cuda_available}
|
381 |
+
CUDA runtime version: {cuda_runtime_version}
|
382 |
+
GPU models and configuration: {nvidia_gpu_models}
|
383 |
+
Nvidia driver version: {nvidia_driver_version}
|
384 |
+
cuDNN version: {cudnn_version}
|
385 |
+
HIP runtime version: {hip_runtime_version}
|
386 |
+
MIOpen runtime version: {miopen_runtime_version}
|
387 |
+
Is XNNPACK available: {is_xnnpack_available}
|
388 |
+
|
389 |
+
Versions of relevant libraries:
|
390 |
+
{pip_packages}
|
391 |
+
{conda_packages}
|
392 |
+
""".strip()
|
393 |
+
|
394 |
+
|
395 |
+
def pretty_str(envinfo):
|
396 |
+
def replace_nones(dct, replacement='Could not collect'):
|
397 |
+
for key in dct.keys():
|
398 |
+
if dct[key] is not None:
|
399 |
+
continue
|
400 |
+
dct[key] = replacement
|
401 |
+
return dct
|
402 |
+
|
403 |
+
def replace_bools(dct, true='Yes', false='No'):
|
404 |
+
for key in dct.keys():
|
405 |
+
if dct[key] is True:
|
406 |
+
dct[key] = true
|
407 |
+
elif dct[key] is False:
|
408 |
+
dct[key] = false
|
409 |
+
return dct
|
410 |
+
|
411 |
+
def prepend(text, tag='[prepend]'):
|
412 |
+
lines = text.split('\n')
|
413 |
+
updated_lines = [tag + line for line in lines]
|
414 |
+
return '\n'.join(updated_lines)
|
415 |
+
|
416 |
+
def replace_if_empty(text, replacement='No relevant packages'):
|
417 |
+
if text is not None and len(text) == 0:
|
418 |
+
return replacement
|
419 |
+
return text
|
420 |
+
|
421 |
+
def maybe_start_on_next_line(string):
|
422 |
+
# If `string` is multiline, prepend a \n to it.
|
423 |
+
if string is not None and len(string.split('\n')) > 1:
|
424 |
+
return '\n{}\n'.format(string)
|
425 |
+
return string
|
426 |
+
|
427 |
+
mutable_dict = envinfo._asdict()
|
428 |
+
|
429 |
+
# If nvidia_gpu_models is multiline, start on the next line
|
430 |
+
mutable_dict['nvidia_gpu_models'] = \
|
431 |
+
maybe_start_on_next_line(envinfo.nvidia_gpu_models)
|
432 |
+
|
433 |
+
# If the machine doesn't have CUDA, report some fields as 'No CUDA'
|
434 |
+
dynamic_cuda_fields = [
|
435 |
+
'cuda_runtime_version',
|
436 |
+
'nvidia_gpu_models',
|
437 |
+
'nvidia_driver_version',
|
438 |
+
]
|
439 |
+
all_cuda_fields = dynamic_cuda_fields + ['cudnn_version']
|
440 |
+
all_dynamic_cuda_fields_missing = all(
|
441 |
+
mutable_dict[field] is None for field in dynamic_cuda_fields)
|
442 |
+
if TORCH_AVAILABLE and not torch.cuda.is_available() and all_dynamic_cuda_fields_missing:
|
443 |
+
for field in all_cuda_fields:
|
444 |
+
mutable_dict[field] = 'No CUDA'
|
445 |
+
if envinfo.cuda_compiled_version is None:
|
446 |
+
mutable_dict['cuda_compiled_version'] = 'None'
|
447 |
+
|
448 |
+
# Replace True with Yes, False with No
|
449 |
+
mutable_dict = replace_bools(mutable_dict)
|
450 |
+
|
451 |
+
# Replace all None objects with 'Could not collect'
|
452 |
+
mutable_dict = replace_nones(mutable_dict)
|
453 |
+
|
454 |
+
# If either of these are '', replace with 'No relevant packages'
|
455 |
+
mutable_dict['pip_packages'] = replace_if_empty(mutable_dict['pip_packages'])
|
456 |
+
mutable_dict['conda_packages'] = replace_if_empty(mutable_dict['conda_packages'])
|
457 |
+
|
458 |
+
# Tag conda and pip packages with a prefix
|
459 |
+
# If they were previously None, they'll show up as ie '[conda] Could not collect'
|
460 |
+
if mutable_dict['pip_packages']:
|
461 |
+
mutable_dict['pip_packages'] = prepend(mutable_dict['pip_packages'],
|
462 |
+
'[{}] '.format(envinfo.pip_version))
|
463 |
+
if mutable_dict['conda_packages']:
|
464 |
+
mutable_dict['conda_packages'] = prepend(mutable_dict['conda_packages'],
|
465 |
+
'[conda] ')
|
466 |
+
return env_info_fmt.format(**mutable_dict)
|
467 |
+
|
468 |
+
|
469 |
+
def get_pretty_env_info():
|
470 |
+
return pretty_str(get_env_info())
|
471 |
+
|
472 |
+
|
473 |
+
def main():
|
474 |
+
print("Collecting environment information...")
|
475 |
+
output = get_pretty_env_info()
|
476 |
+
print(output)
|
477 |
+
|
478 |
+
if TORCH_AVAILABLE and hasattr(torch, 'utils') and hasattr(torch.utils, '_crash_handler'):
|
479 |
+
minidump_dir = torch.utils._crash_handler.DEFAULT_MINIDUMP_DIR
|
480 |
+
if sys.platform == "linux" and os.path.exists(minidump_dir):
|
481 |
+
dumps = [os.path.join(minidump_dir, dump) for dump in os.listdir(minidump_dir)]
|
482 |
+
latest = max(dumps, key=os.path.getctime)
|
483 |
+
ctime = os.path.getctime(latest)
|
484 |
+
creation_time = datetime.datetime.fromtimestamp(ctime).strftime('%Y-%m-%d %H:%M:%S')
|
485 |
+
msg = "\n*** Detected a minidump at {} created on {}, ".format(latest, creation_time) + \
|
486 |
+
"if this is related to your bug please include it when you file a report ***"
|
487 |
+
print(msg, file=sys.stderr)
|
488 |
+
|
489 |
+
|
490 |
+
|
491 |
+
if __name__ == '__main__':
|
492 |
+
main()
|
plot_utils.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
|
3 |
+
import matplotlib
|
4 |
+
import matplotlib.colors as mcolors
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
|
9 |
+
def plot_images(imgs, titles=None, cmaps="gray", dpi=100, size=6, pad=0.5):
|
10 |
+
"""Plot a set of images horizontally.
|
11 |
+
Args:
|
12 |
+
imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
|
13 |
+
titles: a list of strings, as titles for each image.
|
14 |
+
cmaps: colormaps for monochrome images.
|
15 |
+
"""
|
16 |
+
n = len(imgs)
|
17 |
+
if not isinstance(cmaps, (list, tuple)):
|
18 |
+
cmaps = [cmaps] * n
|
19 |
+
figsize = (size * n, size * 3 / 4) if size is not None else None
|
20 |
+
fig, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi)
|
21 |
+
if n == 1:
|
22 |
+
ax = [ax]
|
23 |
+
for i in range(n):
|
24 |
+
ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
|
25 |
+
ax[i].get_yaxis().set_ticks([])
|
26 |
+
ax[i].get_xaxis().set_ticks([])
|
27 |
+
ax[i].set_axis_off()
|
28 |
+
for spine in ax[i].spines.values(): # remove frame
|
29 |
+
spine.set_visible(False)
|
30 |
+
if titles:
|
31 |
+
ax[i].set_title(titles[i])
|
32 |
+
fig.tight_layout(pad=pad)
|
33 |
+
|
34 |
+
return fig
|
35 |
+
|
36 |
+
|
37 |
+
def plot_lines(
|
38 |
+
lines, fig, line_colors="orange", point_colors="cyan", ps=4, lw=2, indices=(0, 1)
|
39 |
+
):
|
40 |
+
"""Plot lines and endpoints for existing images.
|
41 |
+
Args:
|
42 |
+
lines: list of ndarrays of size (N, 2, 2).
|
43 |
+
colors: string, or list of list of tuples (one for each keypoints).
|
44 |
+
ps: size of the keypoints as float pixels.
|
45 |
+
lw: line width as float pixels.
|
46 |
+
indices: indices of the images to draw the matches on.
|
47 |
+
"""
|
48 |
+
if not isinstance(line_colors, list):
|
49 |
+
line_colors = [line_colors] * len(lines)
|
50 |
+
if not isinstance(point_colors, list):
|
51 |
+
point_colors = [point_colors] * len(lines)
|
52 |
+
|
53 |
+
#fig = plt.gcf()
|
54 |
+
ax = fig.axes
|
55 |
+
assert len(ax) > max(indices)
|
56 |
+
axes = [ax[i] for i in indices]
|
57 |
+
fig.canvas.draw()
|
58 |
+
|
59 |
+
# Plot the lines and junctions
|
60 |
+
for a, l, lc, pc in zip(axes, lines, line_colors, point_colors):
|
61 |
+
for i in range(len(l)):
|
62 |
+
line = matplotlib.lines.Line2D(
|
63 |
+
(l[i, 1, 1], l[i, 0, 1]),
|
64 |
+
(l[i, 1, 0], l[i, 0, 0]),
|
65 |
+
zorder=1,
|
66 |
+
c=lc,
|
67 |
+
linewidth=lw,
|
68 |
+
)
|
69 |
+
a.add_line(line)
|
70 |
+
pts = l.reshape(-1, 2)
|
71 |
+
a.scatter(pts[:, 1], pts[:, 0], c=pc, s=ps, linewidths=0, zorder=2)
|
72 |
+
|
73 |
+
return fig
|
74 |
+
|
75 |
+
|
76 |
+
def plot_color_line_matches(lines, fig, lw=2, indices=(0, 1)):
|
77 |
+
"""Plot line matches for existing images with multiple colors.
|
78 |
+
Args:
|
79 |
+
lines: list of ndarrays of size (N, 2, 2).
|
80 |
+
lw: line width as float pixels.
|
81 |
+
indices: indices of the images to draw the matches on.
|
82 |
+
"""
|
83 |
+
n_lines = len(lines[0])
|
84 |
+
|
85 |
+
cmap = plt.get_cmap("nipy_spectral", lut=n_lines)
|
86 |
+
colors = np.array([mcolors.rgb2hex(cmap(i)) for i in range(cmap.N)])
|
87 |
+
|
88 |
+
np.random.shuffle(colors)
|
89 |
+
|
90 |
+
ax = fig.axes
|
91 |
+
assert len(ax) > max(indices)
|
92 |
+
axes = [ax[i] for i in indices]
|
93 |
+
fig.canvas.draw()
|
94 |
+
|
95 |
+
# Plot the lines
|
96 |
+
for a, l in zip(axes, lines):
|
97 |
+
for i in range(len(l)):
|
98 |
+
line = matplotlib.lines.Line2D(
|
99 |
+
(l[i, 1, 1], l[i, 0, 1]),
|
100 |
+
(l[i, 1, 0], l[i, 0, 0]),
|
101 |
+
zorder=1,
|
102 |
+
c=colors[i],
|
103 |
+
linewidth=lw,
|
104 |
+
)
|
105 |
+
a.add_line(line)
|
106 |
+
|
107 |
+
return fig
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python
|
2 |
+
matplotlib
|
3 |
+
kornia
|
terrace0.JPG
ADDED
terrace1.JPG
ADDED