File size: 50,972 Bytes
f8c5b0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
//This is Concedo's shitty adapter for adding python bindings for llama

//Considerations:
//Don't want to use pybind11 due to dependencies on MSVCC
//ZERO or MINIMAL changes as possible to main.cpp - do not move their function declarations here!
//Leave main.cpp UNTOUCHED, We want to be able to update the repo and pull any changes automatically.
//No dynamic memory allocation! Setup structs with FIXED (known) shapes and sizes for ALL output fields
//Python will ALWAYS provide the memory, we just write to it.

#include <time.h>
#include "model_adapter.h"
#include "otherarch.h"

//for easier compilation
//concat source files into one file for compilation purposes
#include "llama_v2.cpp"
#include "llama.cpp"
#include "utils.cpp"
#include "gptj_v1.cpp"
#include "gptj_v2.cpp"
#include "gptj_v3.cpp"
#include "gpt2_v1.cpp"
#include "gpt2_v2.cpp"
#include "gpt2_v3.cpp"
#include "rwkv_v2.cpp"
#include "rwkv_v3.cpp"
#include "neox_v2.cpp"
#include "neox_v3.cpp"
#include "mpt_v3.cpp"

//shared
std::string executable_path = "";
std::string lora_filename = "";
std::string lora_base = "";
bool generation_finished;
std::vector<std::string> generated_tokens;

//return val: 0=fail, 1=(original ggml, alpaca), 2=(ggmf), 3=(ggjt)
static FileFormat file_format = FileFormat::BADFORMAT;

static gpt_vocab vocab;

static gptj_v1_model gptj_ctx_v1;
static gptj_v2_model gptj_ctx_v2;
static gptj_model gptj_ctx_v3;

static gpt2_v1_model gpt2_ctx_v1;
static gpt2_v2_model gpt2_ctx_v2;
static gpt2_model gpt2_ctx_v3;

static gpt_neox_v2_model neox_ctx_v2;
static gpt_neox_model neox_ctx_v3;

static mpt_model mpt_ctx_v3;

static rwkv_v2_context * rwkv_ctx_v2;
static rwkv_context * rwkv_ctx_v3;
static llama_v2_context_params llama_ctx_params_v2;
static llama_context_params llama_ctx_params;
static llama_v2_context * llama_ctx_v2;
static llama_context * llama_ctx_v3;

static gpt_params params;
static int n_past = 0;
static int n_threads = 4;
static int n_blasthreads = 4;
static int n_batch = 8;
static bool useSmartContext = false;
static bool unbanTokens = false;
static int blasbatchsize = 512;
static bool debugmode = false;
static std::string modelname;
static std::vector<gpt_vocab::id> last_n_tokens;
static std::vector<gpt_vocab::id> current_context_tokens;
static size_t mem_per_token = 0;
static std::vector<float> logits;
static std::vector<int> smartcontext;
static std::vector<std::string> stop_sequence;
static std::vector<llama_token_data> top_picks;
static int remaining_tokens = 0;
static std::string concat_output = "";

inline bool IsNanCheck(float f)
{
    const unsigned int u = *(unsigned int*)&f;
    return (u&0x7F800000) == 0x7F800000 && (u&0x7FFFFF);    // Both NaN and qNan.
}

inline bool LogitsDuplicated(std::vector<float> & arr1, std::vector<float> & arr2)
{
    int compareQty = 5;
    if(arr1.size() < compareQty || arr2.size() < compareQty || arr1.size()!=arr2.size())
    {
        printf("\nError: Logit array sizes are bad!\n");
        return false;
    }
    for(int i=0;i<compareQty;++i)
    {
        if(arr1[i]!=arr2[i])
        {
            return false;
        }
    }
    return true;
}


llama_token sample_token(llama_token_data_array * candidates, std::mt19937 & rng)
{
    llama_sample_softmax(nullptr, candidates);
    std::vector<float> probs;
    probs.reserve(candidates->size);
    top_picks.clear();
    for (size_t i = 0; i < candidates->size; ++i) {
        probs.push_back(candidates->data[i].p);
    }

    std::discrete_distribution<> dist(probs.begin(), probs.end());
    int idx = dist(rng);

    if(debugmode)
    {
        top_picks.push_back(candidates->data[idx]);
        for (size_t i = 0; (i < candidates->size && i<4); ++i)
        {
            if(i!=idx)
            {
                top_picks.push_back(candidates->data[i]);
            }
        }
    }

    llama_token result = candidates->data[idx].id;
    return result;
}

llama_token sample_token_mirostat(int n_vocab, llama_token_data_array * candidates, std::mt19937 & rng, float tau, float eta, int m, float * mu)
{
    float N = float(n_vocab);
    llama_sample_softmax(nullptr, candidates);
    // Estimate s_hat using the most probable m tokens
    float s_hat = 0.0;
    float sum_ti_bi = 0.0;
    float sum_ti_sq = 0.0;
    for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
        float t_i = logf(float(i + 2) / float(i + 1));
        float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
        sum_ti_bi += t_i * b_i;
        sum_ti_sq += t_i * t_i;
    }
    s_hat = sum_ti_bi / sum_ti_sq;
    // Compute k from the estimated s_hat and target surprise value
    float epsilon_hat = s_hat - 1;
    float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
    // Sample the next word X using top-k sampling
    llama_sample_top_k(nullptr, candidates, int(k),1);
    llama_token X = sample_token(candidates, rng);    // Compute error as the difference between observed surprise and target surprise value
    size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
        return candidate.id == X;
    }));
    float observed_surprise = -log2f(candidates->data[X_idx].p);
    float e = observed_surprise - tau;
    // Update mu using the learning rate and error
    *mu = *mu - eta * e;
    return X;
}

llama_token sample_token_mirostat_v2(llama_token_data_array * candidates, std::mt19937 & rng, float tau, float eta, float * mu)
{
    llama_sample_softmax(nullptr, candidates);
    // Truncate the words with surprise values greater than mu
    candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
        return -log2f(candidate.p) > *mu;
    }));
    // Normalize the probabilities of the remaining words
    llama_sample_softmax(nullptr, candidates);
    // Sample the next word X from the remaining words
    llama_token X = sample_token(candidates,rng);

    // Compute error as the difference between observed surprise and target surprise value
    size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
        return candidate.id == X;
    }));
    float observed_surprise = -log2f(candidates->data[X_idx].p);
    float e = observed_surprise - tau;
    // Update mu using the learning rate and error
    *mu = *mu - eta * e;
    return X;
}

// Top-a (remove all tokens that have softmax probability less than top_a*m^2 where m is the maximum softmax probability)
// top-a 0 is off (no effect)
void sample_top_a(llama_token_data_array * candidates, float a, size_t min_keep) {
    if (a <= 0.0f || candidates->size<=1) {
        return;
    }

    llama_sample_softmax(nullptr, candidates);

    // Compute the cumulative probabilities
    float maxprob = candidates->data[0].p;

    float threshold = a * maxprob * maxprob; //tokens with probs less than this are removed
    size_t last_idx = candidates->size;

    for (size_t i = 0; i < candidates->size; ++i) {
        // Go until we reach a value under the threshold
        float checkprob = candidates->data[i].p;
        if (checkprob < threshold && i >= min_keep) {
            last_idx = i;
            break;
        }
    }
    // printf("\n\nCandidates: %d, A:%f, MaxProb: %f, Threshold: %f, LastIdx: %d",candidates->size,a,maxprob,threshold,last_idx);
    // printf("\nCandidates: %f %f %f %f\n",candidates->data[0].p,candidates->data[1].p,candidates->data[2].p,candidates->data[3].p);

    // Resize the output vector to keep only the selected tokens
    candidates->size = last_idx;
}

int SampleLogits(const float * logits, int n_ctx, int n_vocab, int rep_pen_range, float rep_pen, float top_k, float top_a, float top_p, float typical_p, float tfs, float temp, std::mt19937 & rng,
int mirostat, float mirostat_tau, float mirostat_eta)
{
    int id = 0;
    std::vector<llama_token_data> candidates;
    candidates.reserve(n_vocab);
    for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
        candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
    }

    llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };

    // Apply penalties
    auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), rep_pen_range), n_ctx);
    llama_sample_repetition_penalty(nullptr, &candidates_p,
        last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
        last_n_repeat, rep_pen);

    // llama_sample_frequency_and_presence_penalties(nullptr, &candidates_p,
    //     last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
    //     last_n_repeat, alpha_frequency, alpha_presence);

    if (temp <= 0)
    {
        // Greedy sampling
        id = llama_sample_token_greedy(nullptr, &candidates_p);
    }
    else
    {
        if (mirostat == 1)
        {
            static float mirostat_mu = 2.0f * mirostat_tau;
            const int mirostat_m = 100;
            llama_sample_temperature(nullptr, &candidates_p, temp);
            id = sample_token_mirostat(n_vocab, &candidates_p, rng, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
        }
        else if (mirostat == 2)
        {
            static float mirostat_mu = 2.0f * mirostat_tau;
            llama_sample_temperature(nullptr, &candidates_p, temp);
            id = sample_token_mirostat_v2(&candidates_p, rng, mirostat_tau, mirostat_eta, &mirostat_mu);
        }
        else
        {
            // Temperature sampling
            llama_sample_top_k(nullptr, &candidates_p, top_k,1);
            sample_top_a(&candidates_p,top_a,1);
            llama_sample_tail_free(nullptr, &candidates_p, tfs,1);
            llama_sample_typical(nullptr, &candidates_p, typical_p,1);
            llama_sample_top_p(nullptr, &candidates_p, top_p,1);
            llama_sample_temperature(nullptr, &candidates_p, temp);
            id = sample_token(&candidates_p, rng);
        }
    }

    return id;
}

static std::string FileFormatTokenizeID(int id, FileFormat file_format)
{
    if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2)
    {
        return std::string(llama_v2_token_to_str(llama_ctx_v2, id));
    }
    else if (file_format == FileFormat::GGJT_3)
    {
        return std::string(llama_token_to_str(llama_ctx_v3, id));
    }
    else
    {
        return vocab.id_to_token[id];
    }
}

ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in_file_format)
{
    ggml_time_init();

    file_format = in_file_format;
    n_threads = params.n_threads = inputs.threads;
    n_blasthreads = inputs.blasthreads;
    n_batch = params.n_batch = inputs.batch_size;
    modelname = params.model = inputs.model_filename;
    useSmartContext = inputs.use_smartcontext;
    debugmode = inputs.debugmode;
    unbanTokens = inputs.unban_tokens;
    blasbatchsize = inputs.blasbatchsize;
    params.memory_f16 = inputs.f16_kv;
    params.n_ctx = inputs.max_context_length;

    neox_ctx_v2.hparams.n_ctx = gptj_ctx_v1.hparams.n_ctx = gptj_ctx_v2.hparams.n_ctx = gpt2_ctx_v1.hparams.n_ctx = gpt2_ctx_v2.hparams.n_ctx
    = neox_ctx_v3.hparams.n_ctx = gptj_ctx_v3.hparams.n_ctx = gptj_ctx_v3.hparams.n_ctx = mpt_ctx_v3.hparams.n_ctx = params.n_ctx;

    printf("System Info: %s\n", llama_print_system_info());
    SetQuantsUnshuffled(false);
    if(file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2)
    {
        //newer format has bit unshuffling
        SetQuantsUnshuffled(file_format == FileFormat::GGJT_2);

        llama_ctx_params_v2 = llama_v2_context_default_params();
        llama_ctx_params_v2.n_ctx = inputs.max_context_length;
        //llama_ctx_params.n_parts = -1;
        llama_ctx_params_v2.seed = -1;
        llama_ctx_params_v2.f16_kv = inputs.f16_kv;
        llama_ctx_params_v2.logits_all = false;
        llama_ctx_params_v2.use_mmap = inputs.use_mmap;
        llama_ctx_params_v2.use_mlock = inputs.use_mlock;
        llama_ctx_params_v2.n_gpu_layers = inputs.gpulayers;

        llama_ctx_v2 = llama_v2_init_from_file(modelname.c_str(), llama_ctx_params_v2);

        if (llama_ctx_v2 == NULL)
        {
            fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, modelname.c_str());
            return ModelLoadResult::FAIL;
        }

        printf("\n---\nWarning: Your model may be an OUTDATED format (ver %d). Please reconvert it for better results!\n---\n", file_format);

        if (lora_filename != "")
        {
            printf("\nAttempting to apply LORA adapter: %s\n", lora_filename.c_str());

            const char * lora_base_arg = NULL;
            if (lora_base != "") {
                printf("Using LORA base model: %s\n", lora_base.c_str());
                lora_base_arg = lora_base.c_str();
            }

            int err = llama_v2_apply_lora_from_file(llama_ctx_v2,
                                                 lora_filename.c_str(),
                                                 lora_base_arg,
                                                 n_threads);
            if (err != 0)
            {
                fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
                return ModelLoadResult::FAIL;
            }
        }

        //determine mem per token
        const std::vector<int> tmp = {1, 2, 3, 4};
        llama_v2_eval(llama_ctx_v2, tmp.data(), tmp.size(), 0, params.n_threads);
        return ModelLoadResult::SUCCESS;
    }
    else if(file_format == FileFormat::GGJT_3)
    {
        llama_ctx_params = llama_context_default_params();
        llama_ctx_params.n_ctx = inputs.max_context_length;
        //llama_ctx_paran_parts = -1;
        llama_ctx_params.seed = -1;
        llama_ctx_params.f16_kv = inputs.f16_kv;
        llama_ctx_params.logits_all = false;
        llama_ctx_params.use_mmap = inputs.use_mmap;
        llama_ctx_params.use_mlock = inputs.use_mlock;
        llama_ctx_params.n_gpu_layers = inputs.gpulayers;

        llama_ctx_v3 = llama_init_from_file(modelname.c_str(), llama_ctx_params);

        if (llama_ctx_v3 == NULL)
        {
            fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, modelname.c_str());
            return ModelLoadResult::FAIL;
        }
        if (lora_filename != "")
        {
            printf("\nAttempting to apply LORA adapter: %s\n", lora_filename.c_str());

            int err = llama_apply_lora_from_file(llama_ctx_v3,
                                                 lora_filename.c_str(),
                                                 NULL,
                                                 n_threads);
            if (err != 0)
            {
                fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
                return ModelLoadResult::FAIL;
            }
        }

        //determine mem per token
        const std::vector<int> tmp = {1, 2, 3, 4};
        auto er = llama_eval(llama_ctx_v3, tmp.data(), tmp.size(), 0, params.n_threads);
        if(er!=0)
        {
            printf("\nLLAMA EVAL returned nonzero!\n");
        }
        return ModelLoadResult::SUCCESS;
    }
    else if (file_format == FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2)
    {
        //start loading the models first
        bool useWorldTokenizer = false;
        if (file_format == FileFormat::RWKV_1)
        {
            rwkv_ctx_v2 = rwkv_v2_init_from_file(modelname.c_str(), n_threads);
        }
        else //rwkv_2
        {
            rwkv_ctx_v3 = rwkv_init_from_file(modelname.c_str(), n_threads);
            const struct rwkv_file_header & header = rwkv_ctx_v3->instance->model.header;
            const size_t n_vocab = header.n_vocab;
            printf("\nDetected Vocab: %d",n_vocab);
            if(n_vocab>60000)
            {
                printf("\nUsing WORLD TOKENIZER");
                useWorldTokenizer = true;
            }
        }

        std::string word;
        if(useWorldTokenizer)
        {
            read_rwkv_world_vocab();
        }
        else
        {
            read_rwkv_vocab();
        }

        int vocabsiz = rwkv_vocab.size();
        for (int i = 0; i < vocabsiz; i++)
        {
            uint32_t len;
            word = rwkv_vocab[i];
            vocab.token_to_id[word] = i;
            vocab.id_to_token[i] = word;
        }
        printf("\nRWKV Vocab: %u\n", vocabsiz);
        logits.resize(vocabsiz);

        if (file_format == FileFormat::RWKV_1)
        {
            n_batch = 1;

            //setup buffers for rwkv state
            auto padding = 512u;
            auto statebufsiz = rwkv_v2_get_state_buffer_element_count(rwkv_ctx_v2) * sizeof(float) + padding;
            auto logitbufsiz = rwkv_v2_get_logits_buffer_element_count(rwkv_ctx_v2) * sizeof(float) + padding;

            printf("\nRWKV old Init: State Buffer:%u, Logit Buffer:%u\n", statebufsiz, logitbufsiz);
            rwkv_ctx_v2->state_out = (float *)malloc(statebufsiz);
            rwkv_ctx_v2->logits_out = (float *)malloc(logitbufsiz);
            rwkv_ctx_v2->state_in = nullptr;

            bool testeval = rwkv_v2_eval(rwkv_ctx_v2, 0, rwkv_ctx_v2->state_in, rwkv_ctx_v2->state_out, rwkv_ctx_v2->logits_out);
            if (!testeval)
            {
                printf("\nError: RWKV old Init Eval Failed!\n");
            }

            memcpy(logits.data(), rwkv_ctx_v2->logits_out, sizeof(float) * vocabsiz);

            if (rwkv_ctx_v2 == NULL)
            {
                return ModelLoadResult::FAIL;
            }
            return ModelLoadResult::SUCCESS;
        }
        else
        {
            n_batch = 1; //do not use sequence mode to speedup until it is fixed

            //setup buffers for rwkv state
            auto padding = 512u;
            auto statebufsiz = rwkv_get_state_buffer_element_count(rwkv_ctx_v3) * sizeof(float) + padding;
            auto logitbufsiz = rwkv_get_logits_buffer_element_count(rwkv_ctx_v3) * sizeof(float) + padding;

            printf("\nRWKV Init: State Buffer:%u, Logit Buffer:%u\n", statebufsiz, logitbufsiz);
            rwkv_ctx_v3->state_out = (float *)malloc(statebufsiz);
            rwkv_ctx_v3->logits_out = (float *)malloc(logitbufsiz);
            rwkv_ctx_v3->state_in = nullptr;

            bool testeval = rwkv_eval(rwkv_ctx_v3, 0, rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, rwkv_ctx_v3->logits_out);
            if (!testeval)
            {
                printf("\nError: RWKV Init Eval Failed!\n");
            }

            memcpy(logits.data(), rwkv_ctx_v3->logits_out, sizeof(float) * vocabsiz);

            if (rwkv_ctx_v3 == NULL)
            {
                return ModelLoadResult::FAIL;
            }
            return ModelLoadResult::SUCCESS;
        }
    }
    else if (file_format == FileFormat::GPT2_1)
    {
        ModelLoadResult res = legacy_gpt2_model_load(params.model, gpt2_ctx_v1, vocab, file_format);
        if(res==ModelLoadResult::FAIL)
        {
            fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
            return res;
        }
        else if(res==ModelLoadResult::RETRY_LOAD)
        {
            printf("\nTensor Transposition Detected! Retrying GPT-2 model loading...");
            return res;
        }
         // determine the required inference memory per token:
        legacy_gpt2_eval(gpt2_ctx_v1, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
        return ModelLoadResult::SUCCESS;
    }
    else if (file_format == FileFormat::GPT2_2 || file_format==FileFormat::GPT2_3 || file_format==FileFormat::GPT2_4)
    {
        if(file_format==FileFormat::GPT2_4)
        {
            ModelLoadResult res = gpt2_model_load(params.model, gpt2_ctx_v3, vocab, file_format, inputs.gpulayers);
            if(res==ModelLoadResult::FAIL)
            {
                fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
                return res;
            }
            else if(res==ModelLoadResult::RETRY_LOAD)
            {
                printf("\nTensor Transposition Detected! Retrying GPT-2 model loading...");
                return res;
            }
            // determine the required inference memory per token:
            gpt2_eval(gpt2_ctx_v3, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
            return ModelLoadResult::SUCCESS;
        }
        else
        {
            //newer format has bit unshuffling
            SetQuantsUnshuffled(file_format == FileFormat::GPT2_3);

            ModelLoadResult res = gpt2_v2_model_load(params.model, gpt2_ctx_v2, vocab, file_format, inputs.gpulayers);
            if(res==ModelLoadResult::FAIL)
            {
                fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
                return res;
            }
            else if(res==ModelLoadResult::RETRY_LOAD)
            {
                printf("\nTensor Transposition Detected! Retrying GPT-2 model loading...");
                return res;
            }
            // determine the required inference memory per token:
            gpt2_v2_eval(gpt2_ctx_v2, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);
            return ModelLoadResult::SUCCESS;
        }
    }
    else if (file_format == FileFormat::GPTJ_1 || file_format == FileFormat::GPTJ_2)
    {
        ModelLoadResult res = legacy_gptj_model_load(params.model, gptj_ctx_v1, vocab, file_format);
        if(res==ModelLoadResult::FAIL)
        {
            fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
            return res;
        }
        else if(res==ModelLoadResult::RETRY_LOAD)
        {
            printf("\nTensor Transposition Detected! Retrying GPT-J model loading...");
            return res;
        }
         // determine the required inference memory per token:
        legacy_gptj_eval(gptj_ctx_v1, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format);

        //if the logits are NAN or duplicated, it means the model is incompatible
        if(logits.size()>0 && IsNanCheck(logits[0]))
        {
            printf("\nBad Logits detected! Retrying GPT-J model loading...");
            ggml_v1_free(gptj_ctx_v1.ctx);
            return ModelLoadResult::RETRY_LOAD;
        }

        return ModelLoadResult::SUCCESS;
    }
    else if(file_format == FileFormat::GPTJ_3 || file_format == FileFormat::GPTJ_4 || file_format == FileFormat::GPTJ_5)
    {
        if(file_format == FileFormat::GPTJ_5)
        {
            ModelLoadResult loadresult = gptj_model_load(params.model, gptj_ctx_v3, vocab, inputs.gpulayers);
            if (loadresult == ModelLoadResult::FAIL)
            {
                fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
                return loadresult;
            }
            else if (loadresult == ModelLoadResult::RETRY_LOAD)
            {
                printf("\nTensor Transposition Detected! Retrying GPT-J model loading...");
                return loadresult;
            }

            // determine the required inference memory per token:
            gptj_eval(gptj_ctx_v3, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);

            //if the logits are NAN or duplicated, it means the model is incompatible
            std::vector<float> oldlogits(logits);

            //this is another hack because they change the library - we run the eval through the model
            //twice and compare logits. if they give the same logits for different inputs, model is broken
            gptj_eval(gptj_ctx_v3, params.n_threads, 0, {4, 5, 6, 7}, logits, mem_per_token);

            if(logits.size()>0 && (IsNanCheck(logits[0]) || LogitsDuplicated(oldlogits,logits)))
            {
                printf("\nBad Logits detected! Retrying GPT-J model loading...");
                ggml_free(gptj_ctx_v3.ctx);
                return ModelLoadResult::RETRY_LOAD;
            }

            return ModelLoadResult::SUCCESS;
        }
        else
        {
            //newer format has bit unshuffling
            SetQuantsUnshuffled(file_format == FileFormat::GPTJ_4);

            ModelLoadResult loadresult = gptj_v2_model_load(params.model, gptj_ctx_v2, vocab, inputs.gpulayers);
            if (loadresult == ModelLoadResult::FAIL)
            {
                fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
                return loadresult;
            }
            else if (loadresult == ModelLoadResult::RETRY_LOAD)
            {
                printf("\nTensor Transposition Detected! Retrying GPT-J model loading...");
                return loadresult;
            }

            // determine the required inference memory per token:
            gptj_v2_eval(gptj_ctx_v2, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);

            //if the logits are NAN or duplicated, it means the model is incompatible
            std::vector<float> oldlogits(logits);

            //this is another hack because they change the library - we run the eval through the model
            //twice and compare logits. if they give the same logits for different inputs, model is broken
            gptj_v2_eval(gptj_ctx_v2, params.n_threads, 0, {4, 5, 6, 7}, logits, mem_per_token);

            if(logits.size()>0 && (IsNanCheck(logits[0]) || LogitsDuplicated(oldlogits,logits)))
            {
                printf("\nBad Logits detected! Retrying GPT-J model loading...");
                ggml_v2_free(gptj_ctx_v2.ctx);
                return ModelLoadResult::RETRY_LOAD;
            }

            return ModelLoadResult::SUCCESS;
        }
    }
    else if(file_format==FileFormat::NEOX_1 || file_format==FileFormat::NEOX_2 || file_format==FileFormat::NEOX_3 || file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5|| file_format==FileFormat::NEOX_6|| file_format==FileFormat::NEOX_7)
    {
        if(file_format==FileFormat::NEOX_6|| file_format==FileFormat::NEOX_7)
        {
            ModelLoadResult res = gpt_neox_model_load(params.model, neox_ctx_v3, vocab, file_format);
            if(res==ModelLoadResult::FAIL)
            {
                fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
                return res;
            }
            else if(res==ModelLoadResult::RETRY_LOAD)
            {
                printf("\nIncorrect Tensor Size Detected! Retrying GPT-NeoX model loading...");
                return res;
            }

            // determine the required inference memory per token:
            gpt_neox_eval(neox_ctx_v3, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);

            return ModelLoadResult::SUCCESS;
        }
        else
        {
            //newer format has bit unshuffling
            SetQuantsUnshuffled(file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5);

            ModelLoadResult res = gpt_neox_v2_model_load(params.model, neox_ctx_v2, vocab, file_format);
            if(res==ModelLoadResult::FAIL)
            {
                fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
                return res;
            }
            else if(res==ModelLoadResult::RETRY_LOAD)
            {
                printf("\nIncorrect Tensor Size Detected! Retrying GPT-NeoX model loading...");
                return res;
            }

            // determine the required inference memory per token:
            gpt_neox_v2_eval(neox_ctx_v2, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);

            if(logits.size()>0 && file_format==FileFormat::NEOX_2 && !IsNanCheck(logits[0]))
            {
                //run the black magic eval to determine if it's redpajama. VERY UGLY HACK!
                std::vector<int> test_embd = ::gpt_tokenize(vocab, "1 2 3 4 5 6 7");
                auto orig_par_res = neox_ctx_v2.hparams.par_res;
                neox_ctx_v2.hparams.par_res = 0; //test with residual false
                gpt_neox_v2_eval(neox_ctx_v2, params.n_threads, 0, test_embd, logits, mem_per_token);
                neox_ctx_v2.hparams.par_res = orig_par_res;
                int topid = std::max_element(logits.begin(),logits.end())-logits.begin();
                std::string predicted = vocab.id_to_token[topid].c_str();
                auto findresult = predicted.find("8");
                if(findresult != std::string::npos && findresult<2)
                {
                    printf("\n---\nOld RedPajama NeoX Detected! Switching to new format! (use_parallel_residual=False)\n");
                    ggml_v2_free(neox_ctx_v2.ctx);
                    return ModelLoadResult::RETRY_LOAD;
                }
            }

            return ModelLoadResult::SUCCESS;
        }

    }
    else if(file_format==FileFormat::MPT_1)
    {
        bool res = mpt_model_load(params.model, mpt_ctx_v3, vocab);
        if(res==false)
        {
            fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
            return ModelLoadResult::FAIL;
        }

        // determine the required inference memory per token:
        mpt_eval(mpt_ctx_v3, params.n_threads, 0, { 0, 1, 2, 3 }, logits, false, mem_per_token);
        return ModelLoadResult::SUCCESS;
    }
    else
    {
        printf("\nUnknown Model, cannot load.\n");
        return ModelLoadResult::FAIL;
    }

}

bool gpttype_generate_abort()
{
    remaining_tokens = 0;
    return true;
}

const std::string & gpttype_get_pending_output()
{
    return concat_output;
}

generation_outputs gpttype_generate(const generation_inputs inputs, generation_outputs &output)
{
    stop_sequence.clear();
    for(int x=0;x<stop_token_max;++x)
    {
        std::string stopper = inputs.stop_sequence[x];
        if(stopper!="")
        {
            stop_sequence.push_back(stopper);
        }
    }
    params.prompt = inputs.prompt;
    params.seed = inputs.seed;
    params.n_predict = inputs.max_length;
    params.top_k = inputs.top_k;
    params.top_p = inputs.top_p;
    params.typical_p = inputs.typical_p;
    params.tfs_z = inputs.tfs;
    params.temp = inputs.temperature;
    params.repeat_last_n = inputs.rep_pen_range;
    params.repeat_penalty = inputs.rep_pen;
    params.mirostat = inputs.mirostat;
    params.mirostat_eta = inputs.mirostat_eta;
    params.mirostat_tau = inputs.mirostat_tau;
    params.n_ctx = inputs.max_context_length;
    params.n_batch = n_batch;
    params.n_threads = n_threads;
    bool stream_sse = inputs.stream_sse;

    generation_finished = false; // Set current generation status
    generated_tokens.clear(); // New Generation, new tokens

    if (params.repeat_last_n < 1)
    {
        params.repeat_last_n = 1;
    }
    if (params.top_k < 1)
    {
        params.top_k = 120; //to disable top_k we actually need to increase this value to a very high number
    }
    if (params.seed <= 0)
    {
        params.seed = time(NULL);
    }

    // tokenize the prompt
    std::vector<int> embd_inp;

    if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2  || file_format == FileFormat::GGJT_3)
    {
        params.prompt.insert(0, 1, ' ');
        if(file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2 )
        {
            embd_inp = ::llama_v2_tokenize(llama_ctx_v2, params.prompt, true);
        }
        else if (file_format == FileFormat::GGML)
        {
            embd_inp = ::legacy_llama_v2_tokenize(llama_ctx_v2, params.prompt, true);
        }
        else
        {
            embd_inp = ::llama_tokenize(llama_ctx_v3, params.prompt, true);
        }
    }
    else
    {
        // tokenize the prompt
        embd_inp = ::gpt_tokenize(vocab, params.prompt);
    }

    //truncate to front of the prompt if its too long
    int32_t nctx = params.n_ctx;

    if (embd_inp.size() + params.n_predict > nctx)
    {
        int offset = embd_inp.size() - nctx + params.n_predict;
        embd_inp = std::vector<int>(embd_inp.begin() + offset, embd_inp.end());
    }

    //determine how much npast we have to rewind from the current state
    std::vector<gpt_vocab::id> embd;

    int last_n_size = params.repeat_last_n;
    last_n_tokens.resize(last_n_size);

    std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
    n_past = 0;

    if (file_format == FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2)
    {
        ContextFastForward(current_context_tokens, embd_inp, n_past, last_n_tokens, nctx, smartcontext, false, true);
    }
    else
    {
        ContextFastForward(current_context_tokens, embd_inp, n_past, last_n_tokens, nctx, smartcontext, useSmartContext, false);
    }

    //if using BLAS and prompt is big enough, switch to single thread and use a huge batch
    bool approved_format = !(file_format == FileFormat::BADFORMAT ||
                            file_format == FileFormat::GPT2_1 ||
                            file_format == FileFormat::GPTJ_1 ||
                            file_format == FileFormat::GPTJ_2 ||
                            file_format == FileFormat::RWKV_1 ||
                            file_format==FileFormat::RWKV_2);
    bool blasmode = (approved_format && embd_inp.size() >= 32 && ggml_cpu_has_blas() && blasbatchsize!=-1);
    // bool blasmode = false;
    int original_batch = params.n_batch;
    int original_threads = params.n_threads;
    if (blasmode)
    {
        //for non llama, limit to 256
        int bbs = blasbatchsize;
        if (file_format != FileFormat::GGML && file_format != FileFormat::GGHF && file_format != FileFormat::GGJT && file_format != FileFormat::GGJT_2 && file_format != FileFormat::GGJT_3)
        {
            bbs = (blasbatchsize > 256 ? 256 : blasbatchsize);
        }

        params.n_batch = bbs; //received reports of 1024 and above crashing on some models
        if(!ggml_cpu_has_gpublas())
        {
            params.n_threads = 1; //do not limit here anymore.
        }
        else
        {
            params.n_threads = n_blasthreads;
        }
    }

    current_context_tokens.resize(n_past);

    remaining_tokens = params.n_predict;
    int stopper_unused_tokens = 0;
    int input_consumed = 0;
    std::mt19937 rng(params.seed);
    concat_output = "";

    bool startedsampling = false;

    timer_start();
    double time1 = 0, time2 = 0;
    int32_t n_vocab = 0;

    if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2)
    {
        n_vocab = llama_v2_n_vocab(llama_ctx_v2);
    }
    else if(file_format == FileFormat::GGJT_3)
    {
        n_vocab = llama_n_vocab(llama_ctx_v3);
    }
    else if (file_format == FileFormat::GPTJ_1 || file_format == FileFormat::GPTJ_2)
    {
        n_vocab = gptj_ctx_v1.hparams.n_vocab;
    }
    else if(file_format == FileFormat::GPTJ_3 || file_format==FileFormat::GPTJ_4)
    {
        n_vocab = gptj_ctx_v2.hparams.n_vocab;
    }
    else if(file_format==FileFormat::GPTJ_5)
    {
        n_vocab = gptj_ctx_v3.hparams.n_vocab;
    }
    else if(file_format == FileFormat::GPT2_1)
    {
        n_vocab = gpt2_ctx_v1.hparams.n_vocab;
    }
    else if(file_format == FileFormat::GPT2_2 || file_format==FileFormat::GPT2_3)
    {
        n_vocab = gpt2_ctx_v2.hparams.n_vocab;
    }
    else if(file_format==FileFormat::GPT2_4)
    {
        n_vocab = gpt2_ctx_v3.hparams.n_vocab;
    }
    else if(file_format == FileFormat::NEOX_1 || file_format == FileFormat::NEOX_2 || file_format == FileFormat::NEOX_3 || file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5)
    {
        n_vocab = neox_ctx_v2.hparams.n_vocab;
    }
    else if( file_format==FileFormat::NEOX_6|| file_format==FileFormat::NEOX_7)
    {
        n_vocab = neox_ctx_v3.hparams.n_vocab;
    }
    else if( file_format==FileFormat::MPT_1)
    {
        n_vocab = mpt_ctx_v3.hparams.n_vocab;
    }
    else if(file_format == FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2)
    {
        n_vocab = vocab.id_to_token.size(); //handled seperately
        if(n_past==0)
        {
            if(file_format == FileFormat::RWKV_1)
            {
                rwkv_ctx_v2->state_in = nullptr;
            }
            else
            {
                rwkv_ctx_v3->state_in = nullptr;
            }
        }
        else
        {
            if (file_format == FileFormat::RWKV_1)
            {
                rwkv_ctx_v2->state_in = rwkv_ctx_v2->state_out;
            }
            else
            {
                rwkv_ctx_v3->state_in = rwkv_ctx_v3->state_out;
            }

            //if it's empty, push in the final previous token
            if(embd_inp.size()==0 && current_context_tokens.size()>0)
            {
                embd_inp.push_back(current_context_tokens[current_context_tokens.size()-1]);
                current_context_tokens.pop_back();
            }
        }
    }
    else
    {
        printf("Bad format!");
    }

    printf("\n");

    if (debugmode)
    {
        std::string outstr = "";
        printf("\n[Debug: Dump Input Tokens, format: %d]\n", file_format);

        std::string tmp = "";
        for (auto id : embd_inp)
        {
            tmp += "'" + FileFormatTokenizeID(id, file_format) + " (" + std::to_string(id) + ")', ";
        }
        ::utreplace(tmp, "\n", "\\n");
        outstr += tmp;

        outstr += "\n\n[Debug: Context Size = " + std::to_string(current_context_tokens.size()) + "]\n";
        tmp = "";
        for (auto id : current_context_tokens)
        {
            tmp += "'" + FileFormatTokenizeID(id, file_format) + " (" + std::to_string(id) + ")', ";
        }
        ::utreplace(tmp, "\n", "\\n");
        outstr += tmp;
        printf("%s\n\n", outstr.c_str());
    }

    while (remaining_tokens > 0)
    {
        gpt_vocab::id id = 0;
        // predict
        unsigned int embdsize = embd.size();
        //print progress
        if (!startedsampling)
        {
            printf("\rProcessing Prompt%s (%d / %d tokens)", (blasmode ? " [BLAS]" : ""), input_consumed, embd_inp.size());
        }
        fflush(stdout);

        if (embdsize > 0)
        {

            bool evalres = false;

            if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2)
            {
                evalres = (llama_v2_eval(llama_ctx_v2, embd.data(), embdsize, n_past, params.n_threads)==0);
            }
            else if(file_format == FileFormat::GGJT_3)
            {
                evalres = (llama_eval(llama_ctx_v3, embd.data(), embdsize, n_past, params.n_threads)==0);
            }
            else if(file_format==FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2)
            {
                if (file_format == FileFormat::RWKV_1)
                {
                    evalres = rwkv_v2_eval(rwkv_ctx_v2, embd[0], rwkv_ctx_v2->state_in, rwkv_ctx_v2->state_out, rwkv_ctx_v2->logits_out);
                    memcpy(logits.data(), rwkv_ctx_v2->logits_out, sizeof(float) * rwkv_vocab.size());
                    rwkv_ctx_v2->state_in = rwkv_ctx_v2->state_out;
                }
                else
                {
                    if(embd.size()>1)
                    {
                        evalres = rwkv_eval_sequence(rwkv_ctx_v3, (uint32_t*)embd.data(), embd.size(), rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, rwkv_ctx_v3->logits_out);
                    }
                    else
                    {
                        evalres = rwkv_eval(rwkv_ctx_v3, embd[0], rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, rwkv_ctx_v3->logits_out);
                    }

                    memcpy(logits.data(), rwkv_ctx_v3->logits_out, sizeof(float) * rwkv_vocab.size());
                    rwkv_ctx_v3->state_in = rwkv_ctx_v3->state_out;
                }
            }
            else if(file_format==FileFormat::GPT2_1)
            {
                evalres = legacy_gpt2_eval(gpt2_ctx_v1, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
            }
            else if(file_format==FileFormat::GPT2_2 || file_format==FileFormat::GPT2_3)
            {
                evalres = gpt2_v2_eval(gpt2_ctx_v2, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
            }
            else if(file_format==FileFormat::GPT2_4)
            {
                evalres = gpt2_eval(gpt2_ctx_v3, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
            }
            else if(file_format==FileFormat::NEOX_1 || file_format == FileFormat::NEOX_2 || file_format == FileFormat::NEOX_3 || file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5)
            {
                evalres = gpt_neox_v2_eval(neox_ctx_v2, params.n_threads, n_past, embd, logits, mem_per_token);
            }
            else if(file_format==FileFormat::NEOX_6|| file_format==FileFormat::NEOX_7)
            {
                evalres = gpt_neox_eval(neox_ctx_v3, params.n_threads, n_past, embd, logits, mem_per_token);
            }
            else if(file_format==FileFormat::GPTJ_1 || file_format==FileFormat::GPTJ_2)
            {
                evalres = legacy_gptj_eval(gptj_ctx_v1, params.n_threads, n_past, embd, logits, mem_per_token, file_format);
            }
            else if(file_format==FileFormat::GPTJ_3 || file_format==FileFormat::GPTJ_4)
            {
                evalres = gptj_v2_eval(gptj_ctx_v2, params.n_threads, n_past, embd, logits, mem_per_token);
            }
            else if(file_format==FileFormat::GPTJ_5)
            {
                evalres = gptj_eval(gptj_ctx_v3, params.n_threads, n_past, embd, logits, mem_per_token);
            }
            else if(file_format==FileFormat::MPT_1)
            {
                evalres = mpt_eval(mpt_ctx_v3, params.n_threads, n_past, embd, logits, false, mem_per_token);
            }
            else
            {
                printf("\nCannot find eval function\n");
            }

            if (!evalres)
            {
                fprintf(stderr, "Failed to predict\n");
                snprintf(output.text, sizeof(output.text), "%s", "");
                output.status = 0;
                generation_finished = true;
                return output;
            }
        }

        n_past += embd.size();
        embd.clear();
        if ((int)embd_inp.size() <= input_consumed)
        {
            // out of user input, sample next token
            const float top_k = params.top_k;
            const float top_p = params.top_p;
            const float temp = params.temp;
            const float top_a = inputs.top_a;
            const float repeat_penalty = params.repeat_penalty;
            const float typical_p = params.typical_p;
            const float tfs_z = params.tfs_z;

            if (!startedsampling)
            {
                startedsampling = true;
                params.n_batch = original_batch;
                params.n_threads = original_threads;
                time1 = timer_check();
                timer_start();
                printf("\n");
            }

            unsigned int eosID = 0;
            float * logitsPtr;
            if(file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2 || file_format == FileFormat::GGJT_3)
            {
                if(file_format == FileFormat::GGJT_3)
                {
                    logitsPtr = llama_get_logits(llama_ctx_v3);
                }
                else
                {
                    logitsPtr = llama_v2_get_logits(llama_ctx_v2);
                }

                eosID = llama_token_eos();

                if (!unbanTokens)
                {
                    // set the logit of the eos token (2) to zero to avoid sampling it
                    logitsPtr[eosID] = 0;
                }
            }
            else
            {
                logitsPtr = logits.data();
                if (!unbanTokens)
                {
                    //gpt2 uses negative logits, so we cant zero it
                    // set the logit of the eos token to minimum to avoid sampling it
                    if (file_format == FileFormat::GPT2_1 ||
                         file_format == FileFormat::GPT2_2 ||
                         file_format == FileFormat::GPT2_3 ||
                         file_format == FileFormat::GPT2_4 ||
                         file_format == FileFormat::GPTJ_1 ||
                         file_format == FileFormat::GPTJ_2 ||
                         file_format == FileFormat::GPTJ_3 ||
                         file_format == FileFormat::GPTJ_4 ||
                         file_format == FileFormat::GPTJ_5)
                    {
                        eosID = 50256;
                        if(logits.size() > eosID)
                        {
                            int topid = std::min_element(logits.begin(),logits.end())-logits.begin();
                            logits[eosID] = (logits[topid] < 0 ? logits[topid] : 0);
                        }
                        else
                        {
                            //special case, starcoder models use ID 0 for EOS
                            if (file_format == FileFormat::GPT2_3 || file_format == FileFormat::GPT2_4)
                            {
                                eosID = 0;
                                int topid = std::min_element(logits.begin(), logits.end()) - logits.begin();
                                logits[eosID] = (logits[topid] < 0 ? logits[topid] : 0);
                            }
                        }
                    }

                     // set the logit of the eos token (0) to minimum to avoid sampling it
                    if (file_format == FileFormat::RWKV_1 ||
                        file_format == FileFormat::RWKV_2 ||
                        file_format == FileFormat::NEOX_1 ||
                         file_format == FileFormat::NEOX_2 ||
                         file_format == FileFormat::NEOX_3 ||
                         file_format == FileFormat::NEOX_4 ||
                         file_format == FileFormat::NEOX_5 ||
                         file_format == FileFormat::NEOX_6 ||
                         file_format == FileFormat::NEOX_7 ||
                         file_format == FileFormat::MPT_1)
                    {
                        eosID = 0;
                        int topid = std::min_element(logits.begin(),logits.end())-logits.begin();
                        logits[eosID] = (logits[topid] < 0 ? logits[topid] : 0);
                    }
                }

            }

            id = SampleLogits(logitsPtr, nctx, n_vocab, last_n_size, repeat_penalty,
            top_k, top_a, top_p, typical_p, tfs_z, temp, rng,
            params.mirostat,params.mirostat_tau,params.mirostat_eta);

            last_n_tokens.erase(last_n_tokens.begin());
            last_n_tokens.push_back(id);
            current_context_tokens.push_back(id);

            // add it to the context
            embd.push_back(id);

            // decrement remaining sampling budget
            --remaining_tokens;

            for (auto id : embd)
            {
                std::string tokenizedstr = FileFormatTokenizeID(id, file_format);
                if(stream_sse)
                {
                    generated_tokens.push_back(tokenizedstr);
                }
                concat_output += tokenizedstr;
            }

            if (startedsampling)
            {
                printf("\rGenerating (%d / %d tokens)", (params.n_predict - remaining_tokens), params.n_predict);
            }
            if(debugmode && top_picks.size()>0)
            {
                printf(" [");
                bool firstloop = true;
                for (auto & pick : top_picks)
                {
                    if (!firstloop)
                    {
                        printf(" ");
                    }
                    firstloop = false;
                    std::string tokenizedstr = FileFormatTokenizeID(pick.id, file_format);
                    ::utreplace(tokenizedstr, "\n", "\\n");
                    printf("(%s %.2f%%)", tokenizedstr.c_str(), pick.p*100);
                }
                printf("]\n");
            }

            if(unbanTokens && id==eosID)
            {
                printf("\n(EOS token triggered!)");
                remaining_tokens = 0;
            }

            for (const auto &matched : stop_sequence)
            {
                if (concat_output.find(matched) != std::string::npos)
                {
                    stopper_unused_tokens = remaining_tokens;
                    remaining_tokens = 0;
                    printf("\n(Stop sequence triggered: <%s>)", matched.c_str());
                    break;
                }
            }
            fflush(stdout);
        }
        else
        {
            // some user input remains from prompt or interaction, forward it to processing
            while ((int)embd_inp.size() > input_consumed)
            {
                embd.push_back(embd_inp[input_consumed]);
                last_n_tokens.erase(last_n_tokens.begin());
                last_n_tokens.push_back(embd_inp[input_consumed]);
                current_context_tokens.push_back(embd_inp[input_consumed]);
                ++input_consumed;
                if ((int)embd.size() >= params.n_batch)
                {
                    break;
                }
            }
        }
    }
    time2 = timer_check();
    float pt1 = (time1*1000.0/(embd_inp.size()==0?1:embd_inp.size()));
    int realnpredict = params.n_predict-stopper_unused_tokens;
    float pt2 = (time2*1000.0/(realnpredict==0?1:realnpredict));
    float tokens_per_second = (realnpredict == 0 ? 0 : realnpredict / (time1 + time2));
    printf("\nTime Taken - Processing:%.1fs (%.0fms/T), Generation:%.1fs (%.0fms/T), Total:%.1fs (%.1fT/s)", time1, pt1, time2, pt2, (time1 + time2), tokens_per_second);
    fflush(stdout);
    output.status = 1;
    generation_finished = true;
    snprintf(output.text, sizeof(output.text), "%s", concat_output.c_str());

    return output;
}