Spaces:
Build error
Build error
static std::string program_source = MULTILINE_QUOTE( | |
typedef char int8_t; | |
typedef uchar uint8_t; | |
typedef int int32_t; | |
typedef uint uint32_t; | |
struct __attribute__ ((packed)) block_q4_0 | |
{ | |
half d; | |
uint8_t qs[QK4_0 / 2]; | |
}; | |
struct __attribute__ ((packed)) block_q4_1 | |
{ | |
half d; | |
half m; | |
uint8_t qs[QK4_1 / 2]; | |
}; | |
struct __attribute__ ((packed)) block_q5_0 | |
{ | |
half d; | |
uint32_t qh; | |
uint8_t qs[QK5_0 / 2]; | |
}; | |
struct __attribute__ ((packed)) block_q5_1 | |
{ | |
half d; | |
half m; | |
uint32_t qh; | |
uint8_t qs[QK5_1 / 2]; | |
}; | |
struct __attribute__ ((packed)) block_q8_0 | |
{ | |
half d; | |
int8_t qs[QK8_0]; | |
}; | |
struct __attribute__((packed)) block_q2_K | |
{ | |
uint8_t scales[16]; | |
uint8_t qs[64]; | |
half d; | |
half dmin; | |
}; | |
struct __attribute__((packed)) block_q3_K | |
{ | |
uint8_t hmask[32]; | |
uint8_t qs[64]; | |
uint8_t scales[12]; | |
half d; | |
}; | |
struct __attribute__((packed)) block_q4_K | |
{ | |
half d; | |
half dmin; | |
uint8_t scales[12]; | |
uint8_t qs[128]; | |
}; | |
struct __attribute__((packed)) block_q5_K | |
{ | |
half d; | |
half dmin; | |
uint8_t scales[12]; | |
uint8_t qh[32]; | |
uint8_t qs[128]; | |
}; | |
struct __attribute__((packed)) block_q6_K | |
{ | |
uint8_t ql[128]; | |
uint8_t qh[64]; | |
int8_t scales[16]; | |
half d; | |
}; | |
__kernel void convert_fp16_to_fp32(__global half* x, __global float* y) { | |
const uint i = get_global_id(0); | |
y[i] = vload_half(0, &x[i]); | |
} | |
void dequantize_q4_0(__global const struct block_q4_0* x, const int ib, const int iqs, float* v0, float* v1) { | |
const float d = vload_half(0, &x[ib].d); | |
const uint8_t vui = x[ib].qs[iqs]; | |
const int8_t vi0 = vui & 0xF; | |
const int8_t vi1 = vui >> 4; | |
*v0 = (vi0 - 8)*d; | |
*v1 = (vi1 - 8)*d; | |
} | |
void dequantize_q4_1(__global const struct block_q4_1* x, const int ib, const int iqs, float* v0, float* v1) { | |
const float d = vload_half(0, &x[ib].d); | |
const float m = vload_half(0, &x[ib].m); | |
const uint8_t vui = x[ib].qs[iqs]; | |
const int8_t vi0 = vui & 0xF; | |
const int8_t vi1 = vui >> 4; | |
*v0 = vi0*d + m; | |
*v1 = vi1*d + m; | |
} | |
void dequantize_q5_0(__global const struct block_q5_0* x, const int ib, const int iqs, float* v0, float* v1) { | |
const float d = vload_half(0, &x[ib].d); | |
uint32_t qh = x[ib].qh; | |
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; | |
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; | |
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0) - 16; | |
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1) - 16; | |
*v0 = x0*d; | |
*v1 = x1*d; | |
} | |
void dequantize_q5_1(__global const struct block_q5_1* x, const int ib, const int iqs, float* v0, float* v1) { | |
const float d = vload_half(0, &x[ib].d); | |
const float m = vload_half(0, &x[ib].m); | |
uint32_t qh = x[ib].qh; | |
const uint8_t xh_0 = ((qh >> (iqs + 0)) << 4) & 0x10; | |
const uint8_t xh_1 = ((qh >> (iqs + 12)) ) & 0x10; | |
const int32_t x0 = ((x[ib].qs[iqs] & 0xf) | xh_0); | |
const int32_t x1 = ((x[ib].qs[iqs] >> 4) | xh_1); | |
*v0 = x0*d + m; | |
*v1 = x1*d + m; | |
} | |
void dequantize_q8_0(__global const struct block_q8_0* x, const int ib, const int iqs, float* v0, float* v1) { | |
const float d = vload_half(0, &x[ib].d); | |
const int8_t vi0 = x[ib].qs[iqs + 0]; | |
const int8_t vi1 = x[ib].qs[iqs + 1]; | |
*v0 = vi0*d; | |
*v1 = vi1*d; | |
} | |
void convert_f16(__global half* x, const int ib, const int iqs, float* v0, float* v1){ | |
*v0 = vload_half(0, &x[ib + 0]); | |
*v1 = vload_half(0, &x[ib + 1]); | |
} | |
inline void get_scale_min_k4(int j, const __global uint8_t *q, uint8_t *d, uint8_t *m) | |
{ | |
if (j < 4) | |
{ | |
*d = q[j] & 63; | |
*m = q[j + 4] & 63; | |
} | |
else | |
{ | |
*d = (q[j + 4] & 0xF) | ((q[j - 4] >> 6) << 4); | |
*m = (q[j + 4] >> 4) | ((q[j - 0] >> 6) << 4); | |
} | |
} | |
__kernel void dequantize_block_q2_K(__global const struct block_q2_K *x, __global float *yy) | |
{ | |
const int i = get_group_id(0); | |
const int tid = get_local_id(0); | |
const int n = tid / 32; | |
const int l = tid - 32 * n; | |
const int is = 8 * n + l / 16; | |
const uint8_t q = x[i].qs[32 * n + l]; | |
__global float *y = yy + i * 256 + 128 * n; | |
const float dall = vload_half(0, &x[i].d); | |
const float dmin = vload_half(0, &x[i].dmin); | |
y[l + 0] = dall * (x[i].scales[is + 0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is + 0] >> 4); | |
y[l + 32] = dall * (x[i].scales[is + 2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is + 2] >> 4); | |
y[l + 64] = dall * (x[i].scales[is + 4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is + 4] >> 4); | |
y[l + 96] = dall * (x[i].scales[is + 6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is + 6] >> 4); | |
} | |
__kernel void dequantize_block_q3_K(__global const struct block_q3_K *x, __global float *yy) | |
{ | |
int r = get_local_id(0) / 4; | |
int i = get_group_id(0); | |
int tid = r / 2; | |
int is0 = r % 2; | |
int l0 = 16 * is0 + 4 * (get_local_id(0) % 4); | |
int n = tid / 4; | |
int j = tid - 4 * n; | |
uint8_t m = 1 << (4 * n + j); | |
int is = 8 * n + 2 * j + is0; | |
int shift = 2 * j; | |
int8_t us = is < 4 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 8] >> 0) & 3) << 4) | |
: is < 8 ? (x[i].scales[is - 0] & 0xF) | (((x[i].scales[is + 4] >> 2) & 3) << 4) | |
: is < 12 ? (x[i].scales[is - 8] >> 4) | (((x[i].scales[is + 0] >> 4) & 3) << 4) | |
: (x[i].scales[is - 8] >> 4) | (((x[i].scales[is - 4] >> 6) & 3) << 4); | |
float d_all = vload_half(0, &x[i].d); | |
float dl = d_all * (us - 32); | |
__global float *y = yy + i * 256 + 128 * n + 32 * j; | |
const __global uint8_t *q = x[i].qs + 32 * n; | |
const __global uint8_t *hm = x[i].hmask; | |
for (int l = l0; l < l0 + 4; ++l) | |
y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4)); | |
} | |
__kernel void dequantize_block_q4_K(__global const struct block_q4_K *x, __global float *yy) | |
{ | |
const int i = get_group_id(0); | |
const int tid = get_local_id(0); | |
const int il = tid / 8; | |
const int ir = tid % 8; | |
const int is = 2 * il; | |
const int n = 4; | |
__global float *y = yy + i * 256 + 64 * il + n * ir; | |
const float dall = vload_half(0, &x[i].d); | |
const float dmin = vload_half(0, &x[i].dmin); | |
__global const uint8_t *q = x[i].qs + 32 * il + n * ir; | |
uint8_t sc, m; | |
get_scale_min_k4(is + 0, x[i].scales, &sc, &m); | |
float d1 = dall * sc; | |
float m1 = dmin * m; | |
get_scale_min_k4(is + 1, x[i].scales, &sc, &m); | |
float d2 = dall * sc; | |
float m2 = dmin * m; | |
for (int l = 0; l < n; ++l) | |
{ | |
y[l + 0] = d1 * (q[l] & 0xF) - m1; | |
y[l + 32] = d2 * (q[l] >> 4) - m2; | |
} | |
} | |
__kernel void dequantize_block_q5_K(__global const struct block_q5_K *x, __global float *yy) | |
{ | |
const int i = get_group_id(0); | |
const int tid = get_local_id(0); | |
const int il = tid / 16; | |
const int ir = tid % 16; | |
const int is = 2 * il; | |
__global float *y = yy + i * 256 + 64 * il + 2 * ir; | |
const float dall = vload_half(0, &x[i].d); | |
const float dmin = vload_half(0, &x[i].dmin); | |
__global const uint8_t *ql = x[i].qs + 32 * il + 2 * ir; | |
__global const uint8_t *qh = x[i].qh + 2 * ir; | |
uint8_t sc, m; | |
get_scale_min_k4(is + 0, x[i].scales, &sc, &m); | |
const float d1 = dall * sc; | |
const float m1 = dmin * m; | |
get_scale_min_k4(is + 1, x[i].scales, &sc, &m); | |
const float d2 = dall * sc; | |
const float m2 = dmin * m; | |
uint8_t hm = 1 << (2 * il); | |
y[0] = d1 * ((ql[0] & 0xF) + (qh[0] & hm ? 16 : 0)) - m1; | |
y[1] = d1 * ((ql[1] & 0xF) + (qh[1] & hm ? 16 : 0)) - m1; | |
hm <<= 1; | |
y[32] = d2 * ((ql[0] >> 4) + (qh[0] & hm ? 16 : 0)) - m2; | |
y[33] = d2 * ((ql[1] >> 4) + (qh[1] & hm ? 16 : 0)) - m2; | |
} | |
__kernel void dequantize_block_q6_K(__global const struct block_q6_K *x, __global float *yy) | |
{ | |
const int i = get_group_id(0); | |
const int tid = get_local_id(0); | |
const int ip = tid / 32; | |
const int il = tid - 32 * ip; | |
const int is = 8 * ip + il / 16; | |
__global float *y = yy + i * 256 + 128 * ip + il; | |
const float d = vload_half(0, &x[i].d); | |
__global const uint8_t *ql = x[i].ql + 64 * ip + il; | |
const uint8_t qh = x[i].qh[32 * ip + il]; | |
__global const int8_t *sc = x[i].scales + is; | |
y[0] = d * sc[0] * ((int8_t)((ql[0] & 0xF) | (((qh >> 0) & 3) << 4)) - 32); | |
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32); | |
y[64] = d * sc[4] * ((int8_t)((ql[0] >> 4) | (((qh >> 4) & 3) << 4)) - 32); | |
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32); | |
} | |
void vec_dot_q2_K(__global const struct block_q2_K* x, const int ib, const int iqs, const __global float *yy, float *result) { | |
int n = iqs / 128; | |
int r = iqs - 128 * n; | |
int l = r / 8; | |
__global const float *y = yy + 128 * n + l; | |
__global const uint8_t *q = x[ib].qs + 32 * n + l; | |
__global const uint8_t *s = x[ib].scales + 8 * n; | |
const float dall = vload_half(0, &x[ib].d); | |
const float dmin = vload_half(0, &x[ib].dmin); | |
float sum = y[ 0] * (dall * ((s[0] & 0xF) * ((q[ 0] >> 0) & 3)) - dmin * (s[0] >> 4)) | |
+ y[ 32] * (dall * ((s[2] & 0xF) * ((q[ 0] >> 2) & 3)) - dmin * (s[2] >> 4)) | |
+ y[ 64] * (dall * ((s[4] & 0xF) * ((q[ 0] >> 4) & 3)) - dmin * (s[4] >> 4)) | |
+ y[ 96] * (dall * ((s[6] & 0xF) * ((q[ 0] >> 6) & 3)) - dmin * (s[6] >> 4)) | |
+ y[ 16] * (dall * ((s[1] & 0xF) * ((q[16] >> 0) & 3)) - dmin * (s[1] >> 4)) | |
+ y[ 48] * (dall * ((s[3] & 0xF) * ((q[16] >> 2) & 3)) - dmin * (s[3] >> 4)) | |
+ y[ 80] * (dall * ((s[5] & 0xF) * ((q[16] >> 4) & 3)) - dmin * (s[5] >> 4)) | |
+ y[112] * (dall * ((s[7] & 0xF) * ((q[16] >> 6) & 3)) - dmin * (s[7] >> 4)); | |
*result = sum; | |
} | |
void vec_dot_q3_K(__global const struct block_q3_K* x, const int ib, const int iqs, const __global float *yy, float *result) { | |
const uint32_t kmask1 = 0x03030303; | |
const uint32_t kmask2 = 0x0f0f0f0f; | |
uint32_t aux[3]; | |
uint32_t utmp[4]; | |
int n = iqs/128; | |
int r = iqs - 128*n; | |
int l = r/8; | |
__global const float * y = yy + 128*n + l; | |
__global const uint8_t * q = x[ib].qs + 32*n + l; | |
__global const uint8_t * hm = x[ib].hmask + l; | |
const int8_t * s = (const int8_t *)utmp + 8*n; | |
aux[0] = x[ib].scales[0] | x[ib].scales[1] << 8 | x[ib].scales[2] << 16 | x[ib].scales[3] << 24; | |
aux[1] = x[ib].scales[4] | x[ib].scales[5] << 8 | x[ib].scales[6] << 16 | x[ib].scales[7] << 24; | |
aux[2] = x[ib].scales[8] | x[ib].scales[9] << 8 | x[ib].scales[10] << 16 | x[ib].scales[11] << 24; | |
utmp[3] = ((aux[1] >> 4) & kmask2) | (((aux[2] >> 6) & kmask1) << 4); | |
utmp[2] = ((aux[0] >> 4) & kmask2) | (((aux[2] >> 4) & kmask1) << 4); | |
utmp[1] = (aux[1] & kmask2) | (((aux[2] >> 2) & kmask1) << 4); | |
utmp[0] = (aux[0] & kmask2) | (((aux[2] >> 0) & kmask1) << 4); | |
const float dall = vload_half(0, &x[ib].d); | |
const uint8_t m = 1 << (4*n); | |
float sum = y[ 0] * (s[0] - 32) * (((q[ 0] >> 0) & 3) - (hm[ 0] & (m << 0) ? 0 : 4)) | |
+ y[ 32] * (s[2] - 32) * (((q[ 0] >> 2) & 3) - (hm[ 0] & (m << 1) ? 0 : 4)) | |
+ y[ 64] * (s[4] - 32) * (((q[ 0] >> 4) & 3) - (hm[ 0] & (m << 2) ? 0 : 4)) | |
+ y[ 96] * (s[6] - 32) * (((q[ 0] >> 6) & 3) - (hm[ 0] & (m << 3) ? 0 : 4)) | |
+ y[ 16] * (s[1] - 32) * (((q[16] >> 0) & 3) - (hm[16] & (m << 0) ? 0 : 4)) | |
+ y[ 48] * (s[3] - 32) * (((q[16] >> 2) & 3) - (hm[16] & (m << 1) ? 0 : 4)) | |
+ y[ 80] * (s[5] - 32) * (((q[16] >> 4) & 3) - (hm[16] & (m << 2) ? 0 : 4)) | |
+ y[112] * (s[7] - 32) * (((q[16] >> 6) & 3) - (hm[16] & (m << 3) ? 0 : 4)); | |
*result = sum * dall; | |
} | |
void vec_dot_q4_K(__global const struct block_q4_K* x, const int ib, const int iqs, const __global float *yy, float *result) { | |
const int j = iqs / 64; // j is in 0...3 | |
const int ir = (iqs - 64*j)/2; // ir is in 0...28 in steps of 4 | |
const int is = 2*j; // is is in 0...6 in steps of 2 | |
__global const float * y = yy + 64*j + ir; | |
__global const uint8_t * q = x[ib].qs + 32*j + ir; | |
const float dall = vload_half(0, &x[ib].d); | |
const float dmin = vload_half(0, &x[ib].dmin); | |
uint8_t sc, m; | |
get_scale_min_k4(is + 0, x[ib].scales, &sc, &m); | |
const float d1 = dall * sc; | |
const float m1 = dmin * m; | |
get_scale_min_k4(is + 1, x[ib].scales, &sc, &m); | |
const float d2 = dall * sc; | |
const float m2 = dmin * m; | |
float sum = 0; | |
for (int k = 0; k < 4; ++k) { | |
sum += y[k + 0] * (d1 * (q[k] & 0xF) - m1); | |
sum += y[k + 32] * (d2 * (q[k] >> 4) - m2); | |
} | |
*result = sum; | |
} | |
void vec_dot_q5_K(__global const struct block_q5_K* x, const int ib, const int iqs, const __global float *yy, float *result) { | |
const int j = iqs / 64; | |
const int ir = (iqs - 64*j)/2; | |
const int is = 2*j; | |
__global const float * y = yy + 64*j + ir; | |
__global const uint8_t * ql = x[ib].qs + 32*j + ir; | |
__global const uint8_t * qh = x[ib].qh + ir; | |
const float dall = vload_half(0, &x[ib].d); | |
const float dmin = vload_half(0, &x[ib].dmin); | |
uint8_t sc, m; | |
get_scale_min_k4(is + 0, x[ib].scales, &sc, &m); | |
const float d1 = dall * sc; | |
const float m1 = dmin * m; | |
get_scale_min_k4(is + 1, x[ib].scales, &sc, &m); | |
const float d2 = dall * sc; | |
const float m2 = dmin * m; | |
uint8_t hm = 1 << is; | |
float sum = 0; | |
for (int k = 0; k < 4; ++k) { | |
sum += y[k + 0] * (d1 * ((ql[k] & 0xF) + (qh[k] & hm ? 16 : 0)) - m1); | |
} | |
hm <<= 1; | |
for (int k = 0; k < 4; ++k) { | |
sum += y[k + 32] * (d2 * ((ql[k] >> 4) + (qh[k] & hm ? 16 : 0)) - m2); | |
} | |
*result = sum; | |
} | |
void vec_dot_q6_K(__global const struct block_q6_K* x, const int ib, const int iqs, const __global float *yy, float *result) { | |
const int ip = iqs / 128; // 0 or 1 | |
const int il = (iqs - 128*ip)/8; // 0...15 | |
const int is = 8*ip; | |
__global const float * y = yy + 128*ip + il; | |
const float d = vload_half(0, &x[ib].d); | |
__global const uint8_t * ql = x[ib].ql + 64*ip + il; | |
__global const uint8_t * qh = x[ib].qh + 32*ip + il; | |
__global const int8_t * sc = x[ib].scales + is; | |
*result = y[ 0] * d * sc[0] * ((int8_t)((ql[ 0] & 0xF) | (((qh[ 0] >> 0) & 3) << 4)) - 32) | |
+ y[ 32] * d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh[ 0] >> 2) & 3) << 4)) - 32) | |
+ y[ 64] * d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh[ 0] >> 4) & 3) << 4)) - 32) | |
+ y[ 96] * d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh[ 0] >> 6) & 3) << 4)) - 32) | |
+ y[ 16] * d * sc[1] * ((int8_t)((ql[16] & 0xF) | (((qh[16] >> 0) & 3) << 4)) - 32) | |
+ y[ 48] * d * sc[3] * ((int8_t)((ql[48] & 0xF) | (((qh[16] >> 2) & 3) << 4)) - 32) | |
+ y[ 80] * d * sc[5] * ((int8_t)((ql[16] >> 4) | (((qh[16] >> 4) & 3) << 4)) - 32) | |
+ y[112] * d * sc[7] * ((int8_t)((ql[48] >> 4) | (((qh[16] >> 6) & 3) << 4)) - 32); | |
} | |
); | |
std::string dequant_template = MULTILINE_QUOTE( | |
__kernel void KERNEL_NAME(__global X_TYPE* x, __global float* y) { | |
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0)*2; | |
if (i >= get_global_size(0)) { | |
return; | |
} | |
const uint qk = QUANT_K; | |
const uint qr = QUANT_R; | |
const int ib = i/qk; // block index | |
const int iqs = (i%qk)/qr; // quant index | |
const int iybs = i - i%qk; // y block start index | |
const int y_offset = qr == 1 ? 1 : qk/2; | |
// dequantize | |
float v0, v1; | |
DEQUANT_FUNC(x, ib, iqs, &v0, &v1); | |
y[iybs + iqs + 0] = v0; | |
y[iybs + iqs + y_offset] = v1; | |
} | |
); | |
std::string dequant_mul_mat_vec_template = MULTILINE_QUOTE( | |
__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) { | |
const int block_size = get_local_size(0); | |
const int row = get_group_id(0); | |
const int tid = get_local_id(0); | |
const uint qk = QUANT_K; | |
const uint qr = QUANT_R; | |
const int y_offset = qr == 1 ? 1 : qk/2; | |
tmp[tid] = 0; | |
for (int i = 0; i < ncols/block_size; i += 2) { | |
const int col = i*block_size + 2*tid; | |
const int ib = (row*ncols + col)/qk; // block index | |
const int iqs = (col%qk)/qr; // quant index | |
const int iybs = col - col%qk; // y block start index | |
// dequantize | |
float v0, v1; | |
DEQUANT_FUNC(x, ib, iqs, &v0, &v1); | |
// matrix multiplication | |
tmp[tid] += v0 * y[iybs + iqs + 0]; | |
tmp[tid] += v1 * y[iybs + iqs + y_offset]; | |
} | |
// sum up partial sums and write back result | |
barrier(CLK_LOCAL_MEM_FENCE); | |
for (int s=block_size/2; s>0; s>>=1) { | |
if (tid < s) { | |
tmp[tid] += tmp[tid + s]; | |
} | |
barrier(CLK_LOCAL_MEM_FENCE); | |
} | |
if (tid == 0) { | |
dst[row] = tmp[0]; | |
} | |
} | |
); | |
std::string dequant_mul_mat_vec_k_template = MULTILINE_QUOTE( | |
__kernel void KERNEL_NAME(__global X_TYPE* x, __local float* tmp, __global float* y, __global float* dst, const int ncols) { | |
const int block_size = get_local_size(0); | |
const int row = get_group_id(0); | |
const int tid = get_local_id(0); | |
const int iter_stride = 256; | |
const int vals_per_iter = iter_stride / block_size; | |
const int num_blocks_per_row = ncols / 256; | |
const int ib0 = row*num_blocks_per_row; | |
tmp[tid] = 0; | |
for (int i = 0; i < ncols; i += iter_stride) { | |
const int col = i + vals_per_iter*tid; | |
const int ib = ib0 + col/256; // x block index | |
const int iqs = col%256; // x quant index | |
const int iybs = col - col%256; // y block start index | |
// dequantize | |
float v; | |
DOT_KERNEL(x, ib, iqs, y + iybs, &v); | |
tmp[tid] += v; | |
} | |
// sum up partial sums and write back result | |
barrier(CLK_LOCAL_MEM_FENCE); | |
for (int s=block_size/2; s>0; s>>=1) { | |
if (tid < s) { | |
tmp[tid] += tmp[tid + s]; | |
} | |
barrier(CLK_LOCAL_MEM_FENCE); | |
} | |
if (tid == 0) { | |
dst[row] = tmp[0]; | |
} | |
} | |
); | |
std::string mul_template = MULTILINE_QUOTE( | |
__kernel void KERNEL_NAME(__global TYPE* x, const int x_offset, __global TYPE* y, const int y_offset, __global TYPE* dst, const int dst_offset, const int ky) { | |
const int i = get_group_id(0)*get_local_size(0) + get_local_id(0); | |
if (i >= get_global_size(0)) { | |
return; | |
} | |
dst[dst_offset + i] = x[x_offset + i] * y[y_offset + i%ky]; | |
} | |
); | |
std::array<std::string, 5> dequant_str_keys = { | |
"KERNEL_NAME", "X_TYPE", "QUANT_K", "QUANT_R", "DEQUANT_FUNC" | |
}; | |
std::array<std::string, 30> dequant_str_values = { | |
"dequantize_row_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0", | |
"dequantize_row_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1", | |
"dequantize_row_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0", | |
"dequantize_row_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1", | |
"dequantize_row_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0", | |
"convert_row_f16", "half", "1", "1", "convert_f16" | |
}; | |
std::array<std::string, 30> dequant_mul_mat_vec_str_values = { | |
"dequantize_mul_mat_vec_q4_0", "struct block_q4_0", "QK4_0", "QR4_0", "dequantize_q4_0", | |
"dequantize_mul_mat_vec_q4_1", "struct block_q4_1", "QK4_1", "QR4_1", "dequantize_q4_1", | |
"dequantize_mul_mat_vec_q5_0", "struct block_q5_0", "QK5_0", "QR5_0", "dequantize_q5_0", | |
"dequantize_mul_mat_vec_q5_1", "struct block_q5_1", "QK5_1", "QR5_1", "dequantize_q5_1", | |
"dequantize_mul_mat_vec_q8_0", "struct block_q8_0", "QK8_0", "QR8_0", "dequantize_q8_0", | |
"convert_mul_mat_vec_f16", "half", "1", "1", "convert_f16" | |
}; | |
std::array<std::string, 2> mul_str_keys = { | |
"KERNEL_NAME", "TYPE" | |
}; | |
std::array<std::string, 2> mul_str_values = { | |
"mul_f32", "float" | |
}; | |
std::array<std::string, 3> dmmv_k_str_keys = { | |
"KERNEL_NAME", "X_TYPE", "DOT_KERNEL" | |
}; | |
std::array<std::string, 15> dmmv_k_str_values = { | |
"dequantize_mul_mat_vec_q2_K", "struct block_q2_K", "vec_dot_q2_K", | |
"dequantize_mul_mat_vec_q3_K", "struct block_q3_K", "vec_dot_q3_K", | |
"dequantize_mul_mat_vec_q4_K", "struct block_q4_K", "vec_dot_q4_K", | |
"dequantize_mul_mat_vec_q5_K", "struct block_q5_K", "vec_dot_q5_K", | |
"dequantize_mul_mat_vec_q6_K", "struct block_q6_K", "vec_dot_q6_K", | |
}; | |
std::string& replace(std::string& s, const std::string& from, const std::string& to) { | |
size_t pos = 0; | |
while ((pos = s.find(from, pos)) != std::string::npos) { | |
s.replace(pos, from.length(), to); | |
pos += to.length(); | |
} | |
return s; | |
} | |
std::string generate_kernels() { | |
std::stringstream src; | |
src << program_source << '\n'; | |
for (size_t i = 0; i < dequant_str_values.size(); i += dequant_str_keys.size()) { | |
std::string dequant_kernel = dequant_template; | |
std::string dmmv_kernel = dequant_mul_mat_vec_template; | |
for (size_t j = 0; j < dequant_str_keys.size(); j++) { | |
replace(dequant_kernel, dequant_str_keys[j], dequant_str_values[i + j]); | |
replace(dmmv_kernel, dequant_str_keys[j], dequant_mul_mat_vec_str_values[i + j]); | |
} | |
src << dequant_kernel << '\n'; | |
src << dmmv_kernel << '\n'; | |
} | |
for (size_t i = 0; i < mul_str_values.size(); i += mul_str_keys.size()) { | |
std::string mul_kernel = mul_template; | |
for (size_t j = 0; j < mul_str_keys.size(); j++) { | |
replace(mul_kernel, mul_str_keys[j], mul_str_values[i + j]); | |
} | |
src << mul_kernel << '\n'; | |
} | |
for (size_t i = 0; i < dmmv_k_str_values.size(); i += dmmv_k_str_keys.size()) { | |
std::string dmmv_k_kernel = dequant_mul_mat_vec_k_template; | |
for (size_t j = 0; j < dmmv_k_str_keys.size(); j++) { | |
replace(dmmv_k_kernel, dmmv_k_str_keys[j], dmmv_k_str_values[i + j]); | |
} | |
src << dmmv_k_kernel << '\n'; | |
} | |
return src.str(); | |
} | |
static cl_platform_id platform; | |
static cl_device_id device; | |
static cl_context context; | |
static cl_command_queue queue; | |
static cl_program program; | |
static cl_kernel convert_row_f16_cl; | |
static cl_kernel dequantize_row_q4_0_cl, dequantize_row_q4_1_cl, dequantize_row_q5_0_cl, dequantize_row_q5_1_cl, dequantize_row_q8_0_cl; | |
static cl_kernel dequantize_mul_mat_vec_q4_0_cl, dequantize_mul_mat_vec_q4_1_cl, dequantize_mul_mat_vec_q5_0_cl, dequantize_mul_mat_vec_q5_1_cl, dequantize_mul_mat_vec_q8_0_cl, convert_mul_mat_vec_f16_cl; | |
static cl_kernel dequantize_block_q2_k_cl, dequantize_block_q3_k_cl, dequantize_block_q4_k_cl, dequantize_block_q5_k_cl, dequantize_block_q6_k_cl; | |
static cl_kernel dequantize_mul_mat_vec_q2_K_cl, dequantize_mul_mat_vec_q3_K_cl, dequantize_mul_mat_vec_q4_K_cl, dequantize_mul_mat_vec_q5_K_cl, dequantize_mul_mat_vec_q6_K_cl; | |
static cl_kernel mul_f32_cl; | |
static bool fp16_support; | |
static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer) { | |
cl_program p; | |
char *program_log; | |
size_t program_size; | |
size_t log_size; | |
int err; | |
program_size = strlen(program_buffer); | |
p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err); | |
if(err < 0) { | |
fprintf(stderr, "OpenCL error creating program"); | |
exit(1); | |
} | |
const char* compile_opts = "-cl-mad-enable -cl-unsafe-math-optimizations -cl-finite-math-only -cl-fast-relaxed-math " | |
"-DQK4_0=32 -DQR4_0=2 -DQK4_1=32 -DQR4_1=2 -DQK5_0=32 -DQR5_0=2 -DQK5_1=32 -DQR5_1=2 -DQK8_0=32 -DQR8_0=1"; | |
err = clBuildProgram(p, 0, NULL, compile_opts, NULL, NULL); | |
if(err < 0) { | |
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size); | |
program_log = (char*) malloc(log_size + 1); | |
program_log[log_size] = '\0'; | |
clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL); | |
fprintf(stderr, "ggml_opencl: kernel compile error:\n\n%s\n", program_log); | |
free(program_log); | |
exit(1); | |
} | |
return p; | |
} | |
void ggml_cl_init(void) { | |
cl_int err; | |
struct cl_device; | |
struct cl_platform { | |
cl_platform_id id; | |
unsigned number; | |
char name[128]; | |
char vendor[128]; | |
struct cl_device * devices; | |
unsigned n_devices; | |
struct cl_device * default_device; | |
}; | |
struct cl_device { | |
struct cl_platform * platform; | |
cl_device_id id; | |
unsigned number; | |
cl_device_type type; | |
char name[128]; | |
}; | |
enum { NPLAT = 16, NDEV = 16 }; | |
struct cl_platform platforms[NPLAT]; | |
unsigned n_platforms = 0; | |
struct cl_device devices[NDEV]; | |
unsigned n_devices = 0; | |
struct cl_device * default_device = NULL; | |
platform = NULL; | |
device = NULL; | |
cl_platform_id platform_ids[NPLAT]; | |
CL_CHECK(clGetPlatformIDs(NPLAT, platform_ids, &n_platforms)); | |
for (unsigned i = 0; i < n_platforms; i++) { | |
struct cl_platform * p = &platforms[i]; | |
p->number = i; | |
p->id = platform_ids[i]; | |
CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL)); | |
CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL)); | |
cl_device_id device_ids[NDEV]; | |
cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices); | |
if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) { | |
p->n_devices = 0; | |
} else { | |
CL_CHECK(clGetDeviceIDsError); | |
} | |
p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL; | |
p->default_device = NULL; | |
for (unsigned j = 0; j < p->n_devices; j++) { | |
struct cl_device * d = &devices[n_devices]; | |
d->number = n_devices++; | |
d->id = device_ids[j]; | |
d->platform = p; | |
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL)); | |
CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL)); | |
printf("\nPlatform:%d Device:%d - %s with %s",i,j,p->name,d->name); | |
if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) { | |
p->default_device = d; | |
} | |
} | |
if (default_device == NULL && p->default_device != NULL) { | |
default_device = p->default_device; | |
} | |
} | |
printf("\n\n"); | |
if (n_devices == 0) { | |
fprintf(stderr, "ggml_opencl: could find any OpenCL devices.\n"); | |
exit(1); | |
} | |
char * user_platform_string = getenv("GGML_OPENCL_PLATFORM"); | |
char * user_device_string = getenv("GGML_OPENCL_DEVICE"); | |
int user_platform_number = -1; | |
int user_device_number = -1; | |
unsigned n; | |
if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) { | |
user_platform_number = (int)n; | |
} | |
if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) { | |
user_device_number = (int)n; | |
} | |
if (user_platform_number != -1 && user_device_number != -1) { | |
cl_platform* platform = &platforms[user_platform_number]; | |
if ((unsigned)user_device_number >= platform->n_devices) { | |
fprintf(stderr, "ggml_opencl: invalid device number %d\n", user_device_number); | |
exit(1); | |
} | |
default_device = &platform->devices[user_device_number]; | |
} else { | |
struct cl_device * selected_devices = devices; | |
unsigned n_selected_devices = n_devices; | |
if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) { | |
for (unsigned i = 0; i < n_platforms; i++) { | |
struct cl_platform * p = &platforms[i]; | |
if (strstr(p->name, user_platform_string) != NULL || | |
strstr(p->vendor, user_platform_string) != NULL) { | |
user_platform_number = (int)i; | |
break; | |
} | |
} | |
if (user_platform_number == -1) { | |
fprintf(stderr, "ggml_opencl: no platform matching '%s' was found.\n", user_platform_string); | |
exit(1); | |
} | |
} | |
if (user_platform_number != -1) { | |
struct cl_platform * p = &platforms[user_platform_number]; | |
selected_devices = p->devices; | |
n_selected_devices = p->n_devices; | |
default_device = p->default_device; | |
if (n_selected_devices == 0) { | |
fprintf(stderr, "ggml_opencl: selected platform '%s' does not have any devices.\n", p->name); | |
exit(1); | |
} | |
} | |
if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) { | |
for (unsigned i = 0; i < n_selected_devices; i++) { | |
struct cl_device * d = &selected_devices[i]; | |
if (strstr(d->name, user_device_string) != NULL) { | |
user_device_number = d->number; | |
break; | |
} | |
} | |
if (user_device_number == -1) { | |
fprintf(stderr, "ggml_opencl: no device matching '%s' was found.\n", user_device_string); | |
exit(1); | |
} | |
} | |
if (user_device_number != -1) { | |
selected_devices = &devices[user_device_number]; | |
n_selected_devices = 1; | |
default_device = &selected_devices[0]; | |
} | |
GGML_ASSERT(n_selected_devices > 0); | |
if (default_device == NULL) { | |
default_device = &selected_devices[0]; | |
} | |
} | |
fprintf(stderr, "ggml_opencl: selecting platform: '%s'\n", default_device->platform->name); | |
fprintf(stderr, "ggml_opencl: selecting device: '%s'\n", default_device->name); | |
if (default_device->type != CL_DEVICE_TYPE_GPU) { | |
fprintf(stderr, "ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name); | |
} | |
platform = default_device->platform->id; | |
device = default_device->id; | |
size_t ext_str_size; | |
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size); | |
char *ext_buffer = (char *)alloca(ext_str_size + 1); | |
clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL); | |
ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated | |
// Check if ext_buffer contains cl_khr_fp16 | |
fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL; | |
fprintf(stderr, "ggml_opencl: device FP16 support: %s\n", fp16_support ? "true" : "false"); | |
fp16_support = false; | |
printf("CL FP16 temporarily disabled pending further optimization.\n"); | |
cl_context_properties properties[] = { | |
(intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)platform, 0 | |
}; | |
CL_CHECK((context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err)); | |
CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err), | |
(err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err : | |
(queue = clCreateCommandQueue(context, device, 0, &err), err) | |
))); | |
const std::string kernel_src = generate_kernels(); | |
program = build_program_from_source(context, device, kernel_src.c_str()); | |
// FP16 to FP32 kernel | |
CL_CHECK((convert_row_f16_cl = clCreateKernel(program, "convert_row_f16", &err), err)); | |
// Dequantize kernels | |
CL_CHECK((dequantize_row_q4_0_cl = clCreateKernel(program, "dequantize_row_q4_0", &err), err)); | |
CL_CHECK((dequantize_row_q4_1_cl = clCreateKernel(program, "dequantize_row_q4_1", &err), err)); | |
CL_CHECK((dequantize_row_q5_0_cl = clCreateKernel(program, "dequantize_row_q5_0", &err), err)); | |
CL_CHECK((dequantize_row_q5_1_cl = clCreateKernel(program, "dequantize_row_q5_1", &err), err)); | |
CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err)); | |
CL_CHECK((dequantize_row_q8_0_cl = clCreateKernel(program, "dequantize_row_q8_0", &err), err)); | |
CL_CHECK((dequantize_block_q2_k_cl = clCreateKernel(program, "dequantize_block_q2_K", &err), err)); | |
CL_CHECK((dequantize_block_q3_k_cl = clCreateKernel(program, "dequantize_block_q3_K", &err), err)); | |
CL_CHECK((dequantize_block_q4_k_cl = clCreateKernel(program, "dequantize_block_q4_K", &err), err)); | |
CL_CHECK((dequantize_block_q5_k_cl = clCreateKernel(program, "dequantize_block_q5_K", &err), err)); | |
CL_CHECK((dequantize_block_q6_k_cl = clCreateKernel(program, "dequantize_block_q6_K", &err), err)); | |
// dequant mul mat kernel | |
CL_CHECK((dequantize_mul_mat_vec_q4_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_0", &err), err)); | |
CL_CHECK((dequantize_mul_mat_vec_q4_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_1", &err), err)); | |
CL_CHECK((dequantize_mul_mat_vec_q5_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_0", &err), err)); | |
CL_CHECK((dequantize_mul_mat_vec_q5_1_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_1", &err), err)); | |
CL_CHECK((dequantize_mul_mat_vec_q8_0_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q8_0", &err), err)); | |
CL_CHECK((convert_mul_mat_vec_f16_cl = clCreateKernel(program, "convert_mul_mat_vec_f16", &err), err)); | |
CL_CHECK((dequantize_mul_mat_vec_q2_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q2_K", &err), err)); | |
CL_CHECK((dequantize_mul_mat_vec_q3_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q3_K", &err), err)); | |
CL_CHECK((dequantize_mul_mat_vec_q4_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q4_K", &err), err)); | |
CL_CHECK((dequantize_mul_mat_vec_q5_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q5_K", &err), err)); | |
CL_CHECK((dequantize_mul_mat_vec_q6_K_cl = clCreateKernel(program, "dequantize_mul_mat_vec_q6_K", &err), err)); | |
// mul kernel | |
CL_CHECK((mul_f32_cl = clCreateKernel(program, "mul_f32", &err), err)); | |
} | |
static cl_kernel* ggml_get_to_fp32_cl(ggml_type type) { | |
switch (type) { | |
case GGML_TYPE_Q4_0: | |
return &dequantize_row_q4_0_cl; | |
case GGML_TYPE_Q4_1: | |
return &dequantize_row_q4_1_cl; | |
case GGML_TYPE_Q5_0: | |
return &dequantize_row_q5_0_cl; | |
case GGML_TYPE_Q5_1: | |
return &dequantize_row_q5_1_cl; | |
case GGML_TYPE_Q8_0: | |
return &dequantize_row_q8_0_cl; | |
case GGML_TYPE_Q2_K: | |
return &dequantize_block_q2_k_cl; | |
case GGML_TYPE_Q3_K: | |
return &dequantize_block_q3_k_cl; | |
case GGML_TYPE_Q4_K: | |
return &dequantize_block_q4_k_cl; | |
case GGML_TYPE_Q5_K: | |
return &dequantize_block_q5_k_cl; | |
case GGML_TYPE_Q6_K: | |
return &dequantize_block_q6_k_cl; | |
case GGML_TYPE_F16: | |
return &convert_row_f16_cl; | |
default: | |
return nullptr; | |
} | |
} | |
static size_t ggml_cl_global_denom(ggml_type type) { | |
switch (type) { | |
case GGML_TYPE_Q4_0: | |
case GGML_TYPE_Q4_1: | |
case GGML_TYPE_Q5_0: | |
case GGML_TYPE_Q5_1: | |
case GGML_TYPE_Q8_0: | |
return 1; | |
case GGML_TYPE_Q2_K: | |
case GGML_TYPE_Q3_K: | |
return 4; | |
case GGML_TYPE_Q4_K: | |
return 8; | |
case GGML_TYPE_Q5_K: | |
case GGML_TYPE_Q6_K: | |
return 4; | |
case GGML_TYPE_F16: | |
default: | |
return 1; | |
} | |
} | |
static size_t ggml_cl_local_size(ggml_type type) { | |
switch (type) { | |
case GGML_TYPE_Q4_0: | |
case GGML_TYPE_Q4_1: | |
case GGML_TYPE_Q5_0: | |
case GGML_TYPE_Q5_1: | |
case GGML_TYPE_Q8_0: | |
return 0; | |
case GGML_TYPE_Q2_K: | |
case GGML_TYPE_Q3_K: | |
return 64; | |
case GGML_TYPE_Q4_K: | |
return 32; | |
case GGML_TYPE_Q5_K: | |
case GGML_TYPE_Q6_K: | |
return 64; | |
case GGML_TYPE_F16: | |
default: | |
return 0; | |
} | |
} | |
static cl_kernel* ggml_get_dequantize_mul_mat_vec_cl(ggml_type type) { | |
switch (type) { | |
case GGML_TYPE_Q4_0: | |
return &dequantize_mul_mat_vec_q4_0_cl; | |
case GGML_TYPE_Q4_1: | |
return &dequantize_mul_mat_vec_q4_1_cl; | |
case GGML_TYPE_Q5_0: | |
return &dequantize_mul_mat_vec_q5_0_cl; | |
case GGML_TYPE_Q5_1: | |
return &dequantize_mul_mat_vec_q5_1_cl; | |
case GGML_TYPE_Q8_0: | |
return &dequantize_mul_mat_vec_q8_0_cl; | |
case GGML_TYPE_F16: | |
return &convert_mul_mat_vec_f16_cl; | |
case GGML_TYPE_Q2_K: | |
return &dequantize_mul_mat_vec_q2_K_cl; | |
case GGML_TYPE_Q3_K: | |
return &dequantize_mul_mat_vec_q3_K_cl; | |
case GGML_TYPE_Q4_K: | |
return &dequantize_mul_mat_vec_q4_K_cl; | |
case GGML_TYPE_Q5_K: | |
return &dequantize_mul_mat_vec_q5_K_cl; | |
case GGML_TYPE_Q6_K: | |
return &dequantize_mul_mat_vec_q6_K_cl; | |
default: | |
return nullptr; | |
} | |
} | |
// buffer pool for cl | |
struct scoped_spin_lock { | |
std::atomic_flag& lock; | |
scoped_spin_lock(std::atomic_flag& lock) : lock(lock) { | |
while (lock.test_and_set(std::memory_order_acquire)) { | |
; // spin | |
} | |
} | |
~scoped_spin_lock() { | |
lock.clear(std::memory_order_release); | |
} | |
scoped_spin_lock(const scoped_spin_lock&) = delete; | |
scoped_spin_lock& operator=(const scoped_spin_lock&) = delete; | |
}; | |
struct cl_buffer { | |
cl_mem mem; | |
size_t size = 0; | |
}; | |
static cl_buffer g_cl_buffer_pool[MAX_CL_BUFFERS]; | |
static std::atomic_flag g_cl_pool_lock = ATOMIC_FLAG_INIT; | |
static cl_mem ggml_cl_pool_malloc(size_t size, size_t * actual_size) { | |
scoped_spin_lock lock(g_cl_pool_lock); | |
cl_int err; | |
int best_i = -1; | |
size_t best_size = std::numeric_limits<size_t>::max(); //smallest unused buffer that fits our needs | |
int worst_i = -1; | |
size_t worst_size = 0; //largest unused buffer seen so far | |
for (int i = 0; i < MAX_CL_BUFFERS; ++i) { | |
cl_buffer &b = g_cl_buffer_pool[i]; | |
if (b.size > 0 && b.size >= size && b.size < best_size) | |
{ | |
best_i = i; | |
best_size = b.size; | |
} | |
if (b.size > 0 && b.size > worst_size) | |
{ | |
worst_i = i; | |
worst_size = b.size; | |
} | |
} | |
if(best_i!=-1) //found the smallest buffer that fits our needs | |
{ | |
cl_buffer& b = g_cl_buffer_pool[best_i]; | |
cl_mem mem = b.mem; | |
*actual_size = b.size; | |
b.size = 0; | |
return mem; | |
} | |
if(worst_i!=-1) //no buffer that fits our needs, resize largest one to save memory | |
{ | |
cl_buffer& b = g_cl_buffer_pool[worst_i]; | |
cl_mem mem = b.mem; | |
b.size = 0; | |
clReleaseMemObject(mem); | |
} | |
cl_mem mem; | |
CL_CHECK((mem = clCreateBuffer(context, CL_MEM_READ_WRITE, size, NULL, &err), err)); | |
*actual_size = size; | |
return mem; | |
} | |
static void ggml_cl_pool_free(cl_mem mem, size_t size) { | |
scoped_spin_lock lock(g_cl_pool_lock); | |
for (int i = 0; i < MAX_CL_BUFFERS; ++i) { | |
cl_buffer& b = g_cl_buffer_pool[i]; | |
if (b.size == 0) { | |
b.mem = mem; | |
b.size = size; | |
return; | |
} | |
} | |
fprintf(stderr, "WARNING: cl buffer pool full, increase MAX_CL_BUFFERS\n"); | |
clReleaseMemObject(mem); | |
} | |
void ggml_cl_free_data(const struct ggml_tensor* tensor) { | |
if (tensor->backend != GGML_BACKEND_GPU) { | |
return; | |
} | |
cl_mem mem = (cl_mem)tensor->data; | |
clReleaseMemObject(mem); | |
} | |
static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t offset, const struct ggml_tensor * src, uint64_t i3, uint64_t i2, cl_event* ev) { | |
cl_int err; | |
const uint64_t ne0 = src->ne[0]; | |
const uint64_t ne1 = src->ne[1]; | |
const uint64_t nb0 = src->nb[0]; | |
const uint64_t nb1 = src->nb[1]; | |
const uint64_t nb2 = src->nb[2]; | |
const uint64_t nb3 = src->nb[3]; | |
const enum ggml_type type = src->type; | |
const size_t ts = ggml_type_size(type); | |
const size_t bs = ggml_blck_size(type); | |
const void * x = (const void *) ((const char *) src->data + i2*nb2 + i3*nb3); | |
if (nb0 == ts && nb1 == ts*ne0/bs) { | |
err = clEnqueueWriteBuffer(queue, dst, CL_FALSE, offset, ne1*nb1, x, 0, NULL, ev); | |
return err; | |
} | |
if (nb0 == ts) { | |
const size_t buffer_origin[3] = { offset, 0, 0 }; | |
const size_t host_origin[3] = { 0, 0, 0 }; | |
const size_t region[3] = { ts*ne0/bs, ne1, 1 }; | |
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, ts*ne0/bs, 0, nb1, 0, x, 0, NULL, ev); | |
return err; | |
} | |
for (uint64_t i1 = 0; i1 < ne1; i1++) { | |
// pretend the row is a matrix with cols=1 | |
const size_t buffer_origin[3] = { offset, i1, 0 }; | |
const size_t host_origin[3] = { 0, 0, 0 }; | |
const size_t region[3] = { ts/bs, ne0, 1 }; | |
err = clEnqueueWriteBufferRect(queue, dst, CL_FALSE, buffer_origin, host_origin, region, 0, 0, nb0, 0, ((const char *)x) + i1*nb0, 0, NULL, ev); | |
if (err != CL_SUCCESS) { | |
break; | |
} | |
} | |
return err; | |
} | |
static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { | |
GGML_ASSERT(src1->backend == GGML_BACKEND_GPU); | |
const int64_t ne00 = src0->ne[0]; | |
const int64_t ne01 = src0->ne[1]; | |
const int64_t ne02 = src0->ne[2]; | |
const int64_t ne03 = src0->ne[2]; | |
const int64_t ne0 = ne00 * ne01 * ne02 * ne03; | |
const int64_t ne10 = src1->ne[0]; | |
const int64_t ne11 = src1->ne[1]; | |
const int64_t ne12 = src1->ne[2]; | |
const int64_t ne13 = src1->ne[3]; | |
const int64_t nb10 = src1->nb[0]; | |
const int nb2 = dst->nb[2]; | |
const int nb3 = dst->nb[3]; | |
size_t x_size; | |
size_t d_size; | |
cl_mem d_X = ggml_cl_pool_malloc(ne0 * sizeof(float), &x_size); // src0 | |
cl_mem d_Y = (cl_mem) src1->data; // src1 is already on device, broadcasted. | |
cl_mem d_D = ggml_cl_pool_malloc(ne0 * sizeof(float), &d_size); // dst | |
for (int64_t i03 = 0; i03 < ne03; i03++) { | |
for (int64_t i02 = 0; i02 < ne02; i02++) { | |
const int i0 = i03*ne02 + i02; | |
cl_event ev; | |
// copy src0 to device | |
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, i0, src0, i03, i02, &ev)); | |
if (nb10 == sizeof(float)) { | |
// Contiguous, avoid overhead from queueing many kernel runs | |
const int64_t i13 = i03%ne13; | |
const int64_t i12 = i02%ne12; | |
const int i1 = i13*ne12*ne11 + i12*ne11; | |
cl_int x_offset = 0; | |
cl_int y_offset = i1*ne10; | |
cl_int d_offset = 0; | |
size_t global = ne00 * ne01; | |
cl_int ky = ne10; | |
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X)); | |
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset)); | |
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y)); | |
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset)); | |
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D)); | |
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset)); | |
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky)); | |
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL)); | |
} else { | |
for (int64_t i01 = 0; i01 < ne01; i01++) { | |
const int64_t i13 = i03%ne13; | |
const int64_t i12 = i02%ne12; | |
const int64_t i11 = i01%ne11; | |
const int i1 = i13*ne12*ne11 + i12*ne11 + i11; | |
cl_int x_offset = i01*ne00; | |
cl_int y_offset = i1*ne10; | |
cl_int d_offset = i01*ne00; | |
// compute | |
size_t global = ne00; | |
cl_int ky = ne10; | |
CL_CHECK(clSetKernelArg(mul_f32_cl, 0, sizeof(cl_mem), &d_X)); | |
CL_CHECK(clSetKernelArg(mul_f32_cl, 1, sizeof(cl_int), &x_offset)); | |
CL_CHECK(clSetKernelArg(mul_f32_cl, 2, sizeof(cl_mem), &d_Y)); | |
CL_CHECK(clSetKernelArg(mul_f32_cl, 3, sizeof(cl_int), &y_offset)); | |
CL_CHECK(clSetKernelArg(mul_f32_cl, 4, sizeof(cl_mem), &d_D)); | |
CL_CHECK(clSetKernelArg(mul_f32_cl, 5, sizeof(cl_int), &d_offset)); | |
CL_CHECK(clSetKernelArg(mul_f32_cl, 6, sizeof(cl_int), &ky)); | |
CL_CHECK(clEnqueueNDRangeKernel(queue, mul_f32_cl, 1, NULL, &global, NULL, 1, &ev, NULL)); | |
} | |
} | |
CL_CHECK(clReleaseEvent(ev)); | |
CL_CHECK(clFinish(queue)); | |
// copy dst to host | |
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); | |
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * ne00*ne01, d, 0, NULL, NULL)); | |
} | |
} | |
ggml_cl_pool_free(d_X, x_size); | |
ggml_cl_pool_free(d_D, d_size); | |
} | |
void ggml_cl_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { | |
GGML_ASSERT(src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32); | |
ggml_cl_mul_f32(src0, src1, dst); | |
} | |
static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { | |
const int64_t ne00 = src0->ne[0]; | |
const int64_t ne01 = src0->ne[1]; | |
const int64_t ne02 = src0->ne[2]; | |
const int64_t ne03 = src0->ne[3]; | |
const int64_t ne10 = src1->ne[0]; | |
const int64_t ne11 = src1->ne[1]; | |
const int nb2 = dst->nb[2]; | |
const int nb3 = dst->nb[3]; | |
const float alpha = 1.0f; | |
const float beta = 0.0f; | |
const int x_ne = ne01 * ne00; | |
const int y_ne = ne11 * ne10; | |
const int d_ne = ne11 * ne01; | |
size_t x_size; | |
size_t y_size; | |
size_t d_size; | |
cl_mem d_X; | |
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT | |
d_X = (cl_mem) src0->data; | |
} else { | |
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size); | |
} | |
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size); | |
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size); | |
for (int64_t i03 = 0; i03 < ne03; i03++) { | |
for (int64_t i02 = 0; i02 < ne02; i02++) { | |
// copy data to device | |
if (src0->backend != GGML_BACKEND_GPU) { | |
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); | |
} | |
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL)); | |
CL_CHECK(clFinish(queue)); | |
// compute | |
cl_event ev_sgemm; | |
clblast::StatusCode status = (clblast::StatusCode)CLBlastSgemm((CLBlastLayout)clblast::Layout::kColMajor, | |
(CLBlastTranspose)clblast::Transpose::kYes, (CLBlastTranspose)clblast::Transpose::kNo, | |
ne01, ne11, ne10, | |
alpha, | |
d_X, 0, ne00, | |
d_Y, 0, ne10, | |
beta, | |
d_D, 0, ne01, | |
&queue, &ev_sgemm); | |
if (status != clblast::StatusCode::kSuccess) { | |
printf("\nF32 Matmul Failed (%d): [dims: %lld,%lld,%lld,%lld] You may be out of VRAM. Please check if you have enough.\n",status,ne00,ne01,ne10,ne11); | |
GGML_ASSERT(false); | |
} | |
// copy dst to host | |
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); | |
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL)); | |
} | |
} | |
if (src0->backend != GGML_BACKEND_GPU) { | |
ggml_cl_pool_free(d_X, x_size); | |
} | |
ggml_cl_pool_free(d_Y, y_size); | |
ggml_cl_pool_free(d_D, d_size); | |
} | |
static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, void * wdata, size_t /* wsize */) { | |
GGML_ASSERT(fp16_support); | |
const int64_t ne00 = src0->ne[0]; | |
const int64_t ne01 = src0->ne[1]; | |
const int64_t ne02 = src0->ne[2]; | |
const int64_t ne03 = src0->ne[3]; | |
const int64_t ne10 = src1->ne[0]; | |
const int64_t ne11 = src1->ne[1]; | |
const int nb10 = src1->nb[0]; | |
const int nb11 = src1->nb[1]; | |
const int nb12 = src1->nb[2]; | |
const int nb13 = src1->nb[3]; | |
const int nb2 = dst->nb[2]; | |
const int nb3 = dst->nb[3]; | |
const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f); | |
const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f); | |
const int x_ne = ne01 * ne00; | |
const int y_ne = ne11 * ne10; | |
const int d_ne = ne11 * ne01; | |
size_t x_size; | |
size_t y_size; | |
size_t d_size; | |
cl_mem d_X; | |
if (src0->backend == GGML_BACKEND_GPU) { // NOLINT | |
d_X = (cl_mem) src0->data; | |
} else { | |
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size); | |
} | |
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * y_ne, &y_size); | |
cl_mem d_D = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * d_ne, &d_size); | |
bool src1_cont_rows = nb10 == sizeof(float); | |
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float); | |
for (int64_t i03 = 0; i03 < ne03; i03++) { | |
for (int64_t i02 = 0; i02 < ne02; i02++) { | |
// copy src0 to device | |
if (src0->backend != GGML_BACKEND_GPU) { | |
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); | |
} | |
// convert src1 to fp16 | |
// TODO: use multiple threads | |
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02); | |
char * src1i = (char *) src1->data + i03*nb13 + i02*nb12; | |
if (src1_cont_rows) { | |
if (src1_cont_cols) { | |
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11); | |
} | |
else { | |
for (int64_t i01 = 0; i01 < ne11; i01++) { | |
ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10); | |
} | |
} | |
} | |
else { | |
for (int64_t i01 = 0; i01 < ne11; i01++) { | |
for (int64_t i00 = 0; i00 < ne10; i00++) { | |
// very slow due to no inlining | |
tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10)); | |
} | |
} | |
} | |
// copy src1 to device | |
CL_CHECK(clEnqueueWriteBuffer(queue, d_Y, false, 0, sizeof(ggml_fp16_t) * y_ne, tmp, 0, NULL, NULL)); | |
CL_CHECK(clFinish(queue)); | |
// compute | |
cl_event ev_sgemm; | |
clblast::StatusCode status = (clblast::StatusCode)CLBlastHgemm((CLBlastLayout)clblast::Layout::kColMajor, | |
(CLBlastTranspose)clblast::Transpose::kYes, (CLBlastTranspose)clblast::Transpose::kNo, | |
ne01, ne11, ne10, | |
alpha, | |
d_X, 0, ne00, | |
d_Y, 0, ne10, | |
beta, | |
d_D, 0, ne01, | |
&queue, &ev_sgemm); | |
if (status != clblast::StatusCode::kSuccess) { | |
printf("\nF16 Matmul Failed (%d): [dims: %lld,%lld,%lld,%lld] You may be out of VRAM. Please check if you have enough.\n",status,ne00,ne01,ne10,ne11); | |
GGML_ASSERT(false); | |
} | |
// copy dst to host, then convert to float | |
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL)); | |
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); | |
ggml_fp16_to_fp32_row(tmp, d, d_ne); | |
} | |
} | |
if (src0->backend != GGML_BACKEND_GPU) { | |
ggml_cl_pool_free(d_X, x_size); | |
} | |
ggml_cl_pool_free(d_Y, y_size); | |
ggml_cl_pool_free(d_D, d_size); | |
} | |
static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { | |
const int64_t ne00 = src0->ne[0]; | |
const int64_t ne01 = src0->ne[1]; | |
const int64_t ne02 = src0->ne[2]; | |
const int64_t ne03 = src0->ne[3]; | |
const int64_t ne10 = src1->ne[0]; | |
const int64_t ne11 = src1->ne[1]; | |
const int nb2 = dst->nb[2]; | |
const int nb3 = dst->nb[3]; | |
const ggml_type type = src0->type; | |
const bool mul_mat_vec = ne11 == 1; | |
const float alpha = 1.0f; | |
const float beta = 0.0f; | |
const int x_ne = ne01 * ne00; | |
const int y_ne = ne11 * ne10; | |
const int d_ne = ne11 * ne01; | |
const size_t q_sz = ggml_type_size(type) * x_ne / ggml_blck_size(type); | |
size_t x_size; | |
size_t y_size; | |
size_t d_size; | |
size_t q_size; | |
cl_mem d_X; | |
if (!mul_mat_vec) { | |
d_X = ggml_cl_pool_malloc(sizeof(float) * x_ne, &x_size); | |
} | |
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size); | |
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size); | |
cl_mem d_Q; | |
if (src0->backend == GGML_BACKEND_CPU) { | |
d_Q = ggml_cl_pool_malloc(q_sz, &q_size); | |
} | |
cl_kernel* to_fp32_cl = ggml_get_to_fp32_cl(type); | |
cl_kernel* dmmv = ggml_get_dequantize_mul_mat_vec_cl(type); | |
GGML_ASSERT(to_fp32_cl != nullptr); | |
const size_t global_denom = ggml_cl_global_denom(type); | |
const size_t local = ggml_cl_local_size(type); | |
size_t ev_idx = 0; | |
std::vector<cl_event> events; | |
for (int64_t i03 = 0; i03 < ne03; i03++) { | |
for (int64_t i02 = 0; i02 < ne02; i02++) { | |
// copy src0 to device if necessary | |
if (src0->backend == GGML_BACKEND_CPU) { | |
events.emplace_back(); | |
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++)); | |
} else if (src0->backend == GGML_BACKEND_GPU) { | |
d_Q = (cl_mem) src0->data; | |
} else { | |
GGML_ASSERT(false); | |
} | |
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel | |
// copy src1 to device | |
events.emplace_back(); | |
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, events.data() + ev_idx++)); | |
// compute | |
const size_t global = ne01 * CL_DMMV_BLOCK_SIZE; | |
const size_t local = CL_DMMV_BLOCK_SIZE; | |
const cl_int ncols = ne00; | |
events.emplace_back(); | |
CL_CHECK(clSetKernelArg(*dmmv, 0, sizeof(cl_mem), &d_Q)); | |
CL_CHECK(clSetKernelArg(*dmmv, 1, sizeof(float) * local, NULL)); | |
CL_CHECK(clSetKernelArg(*dmmv, 2, sizeof(cl_mem), &d_Y)); | |
CL_CHECK(clSetKernelArg(*dmmv, 3, sizeof(cl_mem), &d_D)); | |
CL_CHECK(clSetKernelArg(*dmmv, 4, sizeof(cl_int), &ncols)); | |
CL_CHECK(clEnqueueNDRangeKernel(queue, *dmmv, 1, NULL, &global, &local, events.size() - 1, events.data(), events.data() + ev_idx++)); | |
} else { // general dequantization kernel + CLBlast matrix matrix multiplication | |
// convert src0 to fp32 on device | |
const size_t global = x_ne / global_denom; | |
CL_CHECK(clSetKernelArg(*to_fp32_cl, 0, sizeof(cl_mem), &d_Q)); | |
CL_CHECK(clSetKernelArg(*to_fp32_cl, 1, sizeof(cl_mem), &d_X)); | |
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL)); | |
// copy src1 to device | |
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL)); | |
events.emplace_back(); | |
// wait for conversion | |
CL_CHECK(clFinish(queue)); | |
// compute | |
clblast::StatusCode status = (clblast::StatusCode)CLBlastSgemm((CLBlastLayout)clblast::Layout::kColMajor, | |
(CLBlastTranspose)clblast::Transpose::kYes, (CLBlastTranspose)clblast::Transpose::kNo, | |
ne01, ne11, ne10, | |
alpha, | |
d_X, 0, ne00, | |
d_Y, 0, ne10, | |
beta, | |
d_D, 0, ne01, | |
&queue, events.data() + ev_idx++); | |
if (status != clblast::StatusCode::kSuccess) { | |
printf("\nQF32 Matmul Failed (%d): [dims: %lld,%lld,%lld,%lld] You may be out of VRAM. Please check if you have enough.\n",status,ne00,ne01,ne10,ne11); | |
GGML_ASSERT(false); | |
} | |
} | |
// copy dst to host | |
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3); | |
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL)); | |
for (auto *event : events) { | |
clReleaseEvent(event); | |
} | |
ev_idx = 0; | |
events.clear(); | |
} | |
} | |
if (!mul_mat_vec) { | |
ggml_cl_pool_free(d_X, x_size); | |
} | |
ggml_cl_pool_free(d_Y, y_size); | |
ggml_cl_pool_free(d_D, d_size); | |
if (src0->backend == GGML_BACKEND_CPU) { | |
ggml_cl_pool_free(d_Q, q_size); | |
} | |
} | |
bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { | |
const int64_t ne10 = src1->ne[0]; | |
const int64_t ne0 = dst->ne[0]; | |
const int64_t ne1 = dst->ne[1]; | |
// TODO: find the optimal values for these | |
if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && | |
src1->type == GGML_TYPE_F32 && | |
dst->type == GGML_TYPE_F32 && | |
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU)) { | |
return true; | |
} | |
return false; | |
} | |
bool ggml_cl_mul_mat_use_f16(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * /* dst */) { | |
// If device doesn't support FP16 | |
if (!fp16_support) { | |
return false; | |
} | |
size_t src0_sz = ggml_nbytes(src0); | |
size_t src1_sz = ggml_nbytes(src1); | |
// mul_mat_q: src0 is converted to fp32 on device | |
size_t mul_mat_q_transfer = src0_sz + src1_sz; | |
// mul_mat_f16: src1 is converted to fp16 on cpu | |
size_t mul_mat_f16_transfer = src0_sz + sizeof(ggml_fp16_t) * ggml_nelements(src1); | |
// choose the smaller one to transfer to the device | |
// TODO: this is not always the best choice due to the overhead of converting to fp16 | |
return mul_mat_f16_transfer < mul_mat_q_transfer; | |
} | |
void ggml_cl_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, void * wdata, size_t wsize) { | |
GGML_ASSERT(ggml_cl_can_mul_mat(src0, src1, dst)); | |
if (src0->type == GGML_TYPE_F32) { | |
ggml_cl_mul_mat_f32(src0, src1, dst); | |
} | |
else if (src0->type == GGML_TYPE_F16) { | |
if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) { | |
ggml_cl_mul_mat_f16(src0, src1, dst, wdata, wsize); | |
} | |
else { | |
ggml_cl_mul_mat_q_f32(src0, src1, dst); | |
} | |
} | |
else if (ggml_is_quantized(src0->type)) { | |
ggml_cl_mul_mat_q_f32(src0, src1, dst); | |
} | |
else { | |
GGML_ASSERT(false); | |
} | |
} | |
size_t ggml_cl_mul_mat_get_wsize(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) { | |
if (ggml_cl_mul_mat_use_f16(src0, src1, dst)) { | |
return ggml_nelements(src1) * sizeof(ggml_fp16_t); | |
} | |
return 0; | |
} | |
void ggml_cl_transform_tensor(void * data, ggml_tensor * tensor) { | |
const int64_t ne0 = tensor->ne[0]; | |
const int64_t ne1 = tensor->ne[1]; | |
const int64_t ne2 = tensor->ne[2]; | |
const int64_t ne3 = tensor->ne[3]; | |
const ggml_type type = tensor->type; | |
const size_t q_sz = ggml_type_size(type) * ne0 * ne1 * ne2 * ne3 / ggml_blck_size(type); | |
size_t q_size; | |
cl_mem dst = ggml_cl_pool_malloc(q_sz, &q_size); | |
tensor->data = data; | |
// copy tensor to device | |
for (int64_t i3 = 0; i3 < ne3; i3++) { | |
for (int64_t i2 = 0; i2 < ne2; i2++) { | |
int i = i3*ne2 + i2; | |
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, dst, i*ne0*ne1, tensor, i3, i2, NULL)); | |
} | |
} | |
CL_CHECK(clFinish(queue)); | |
tensor->data = dst; | |
GGML_ASSERT(tensor->backend == GGML_BACKEND_GPU); | |
} | |