Spaces:
Build error
Build error
//This is Concedo's shitty adapter for adding python bindings for llama | |
//Considerations: | |
//Don't want to use pybind11 due to dependencies on MSVCC | |
//ZERO or MINIMAL changes as possible to main.cpp - do not move their function declarations here! | |
//Leave main.cpp UNTOUCHED, We want to be able to update the repo and pull any changes automatically. | |
//No dynamic memory allocation! Setup structs with FIXED (known) shapes and sizes for ALL output fields | |
//Python will ALWAYS provide the memory, we just write to it. | |
//for easier compilation | |
//concat source files into one file for compilation purposes | |
//shared | |
std::string executable_path = ""; | |
std::string lora_filename = ""; | |
std::string lora_base = ""; | |
bool generation_finished; | |
std::vector<std::string> generated_tokens; | |
//return val: 0=fail, 1=(original ggml, alpaca), 2=(ggmf), 3=(ggjt) | |
static FileFormat file_format = FileFormat::BADFORMAT; | |
static gpt_vocab vocab; | |
static gptj_v1_model gptj_ctx_v1; | |
static gptj_v2_model gptj_ctx_v2; | |
static gptj_model gptj_ctx_v3; | |
static gpt2_v1_model gpt2_ctx_v1; | |
static gpt2_v2_model gpt2_ctx_v2; | |
static gpt2_model gpt2_ctx_v3; | |
static gpt_neox_v2_model neox_ctx_v2; | |
static gpt_neox_model neox_ctx_v3; | |
static mpt_model mpt_ctx_v3; | |
static rwkv_v2_context * rwkv_ctx_v2; | |
static rwkv_context * rwkv_ctx_v3; | |
static llama_v2_context_params llama_ctx_params_v2; | |
static llama_context_params llama_ctx_params; | |
static llama_v2_context * llama_ctx_v2; | |
static llama_context * llama_ctx_v3; | |
static gpt_params params; | |
static int n_past = 0; | |
static int n_threads = 4; | |
static int n_blasthreads = 4; | |
static int n_batch = 8; | |
static bool useSmartContext = false; | |
static bool unbanTokens = false; | |
static int blasbatchsize = 512; | |
static bool debugmode = false; | |
static std::string modelname; | |
static std::vector<gpt_vocab::id> last_n_tokens; | |
static std::vector<gpt_vocab::id> current_context_tokens; | |
static size_t mem_per_token = 0; | |
static std::vector<float> logits; | |
static std::vector<int> smartcontext; | |
static std::vector<std::string> stop_sequence; | |
static std::vector<llama_token_data> top_picks; | |
static int remaining_tokens = 0; | |
static std::string concat_output = ""; | |
inline bool IsNanCheck(float f) | |
{ | |
const unsigned int u = *(unsigned int*)&f; | |
return (u&0x7F800000) == 0x7F800000 && (u&0x7FFFFF); // Both NaN and qNan. | |
} | |
inline bool LogitsDuplicated(std::vector<float> & arr1, std::vector<float> & arr2) | |
{ | |
int compareQty = 5; | |
if(arr1.size() < compareQty || arr2.size() < compareQty || arr1.size()!=arr2.size()) | |
{ | |
printf("\nError: Logit array sizes are bad!\n"); | |
return false; | |
} | |
for(int i=0;i<compareQty;++i) | |
{ | |
if(arr1[i]!=arr2[i]) | |
{ | |
return false; | |
} | |
} | |
return true; | |
} | |
llama_token sample_token(llama_token_data_array * candidates, std::mt19937 & rng) | |
{ | |
llama_sample_softmax(nullptr, candidates); | |
std::vector<float> probs; | |
probs.reserve(candidates->size); | |
top_picks.clear(); | |
for (size_t i = 0; i < candidates->size; ++i) { | |
probs.push_back(candidates->data[i].p); | |
} | |
std::discrete_distribution<> dist(probs.begin(), probs.end()); | |
int idx = dist(rng); | |
if(debugmode) | |
{ | |
top_picks.push_back(candidates->data[idx]); | |
for (size_t i = 0; (i < candidates->size && i<4); ++i) | |
{ | |
if(i!=idx) | |
{ | |
top_picks.push_back(candidates->data[i]); | |
} | |
} | |
} | |
llama_token result = candidates->data[idx].id; | |
return result; | |
} | |
llama_token sample_token_mirostat(int n_vocab, llama_token_data_array * candidates, std::mt19937 & rng, float tau, float eta, int m, float * mu) | |
{ | |
float N = float(n_vocab); | |
llama_sample_softmax(nullptr, candidates); | |
// Estimate s_hat using the most probable m tokens | |
float s_hat = 0.0; | |
float sum_ti_bi = 0.0; | |
float sum_ti_sq = 0.0; | |
for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) { | |
float t_i = logf(float(i + 2) / float(i + 1)); | |
float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p); | |
sum_ti_bi += t_i * b_i; | |
sum_ti_sq += t_i * t_i; | |
} | |
s_hat = sum_ti_bi / sum_ti_sq; | |
// Compute k from the estimated s_hat and target surprise value | |
float epsilon_hat = s_hat - 1; | |
float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat); | |
// Sample the next word X using top-k sampling | |
llama_sample_top_k(nullptr, candidates, int(k),1); | |
llama_token X = sample_token(candidates, rng); // Compute error as the difference between observed surprise and target surprise value | |
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { | |
return candidate.id == X; | |
})); | |
float observed_surprise = -log2f(candidates->data[X_idx].p); | |
float e = observed_surprise - tau; | |
// Update mu using the learning rate and error | |
*mu = *mu - eta * e; | |
return X; | |
} | |
llama_token sample_token_mirostat_v2(llama_token_data_array * candidates, std::mt19937 & rng, float tau, float eta, float * mu) | |
{ | |
llama_sample_softmax(nullptr, candidates); | |
// Truncate the words with surprise values greater than mu | |
candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { | |
return -log2f(candidate.p) > *mu; | |
})); | |
// Normalize the probabilities of the remaining words | |
llama_sample_softmax(nullptr, candidates); | |
// Sample the next word X from the remaining words | |
llama_token X = sample_token(candidates,rng); | |
// Compute error as the difference between observed surprise and target surprise value | |
size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) { | |
return candidate.id == X; | |
})); | |
float observed_surprise = -log2f(candidates->data[X_idx].p); | |
float e = observed_surprise - tau; | |
// Update mu using the learning rate and error | |
*mu = *mu - eta * e; | |
return X; | |
} | |
// Top-a (remove all tokens that have softmax probability less than top_a*m^2 where m is the maximum softmax probability) | |
// top-a 0 is off (no effect) | |
void sample_top_a(llama_token_data_array * candidates, float a, size_t min_keep) { | |
if (a <= 0.0f || candidates->size<=1) { | |
return; | |
} | |
llama_sample_softmax(nullptr, candidates); | |
// Compute the cumulative probabilities | |
float maxprob = candidates->data[0].p; | |
float threshold = a * maxprob * maxprob; //tokens with probs less than this are removed | |
size_t last_idx = candidates->size; | |
for (size_t i = 0; i < candidates->size; ++i) { | |
// Go until we reach a value under the threshold | |
float checkprob = candidates->data[i].p; | |
if (checkprob < threshold && i >= min_keep) { | |
last_idx = i; | |
break; | |
} | |
} | |
// printf("\n\nCandidates: %d, A:%f, MaxProb: %f, Threshold: %f, LastIdx: %d",candidates->size,a,maxprob,threshold,last_idx); | |
// printf("\nCandidates: %f %f %f %f\n",candidates->data[0].p,candidates->data[1].p,candidates->data[2].p,candidates->data[3].p); | |
// Resize the output vector to keep only the selected tokens | |
candidates->size = last_idx; | |
} | |
int SampleLogits(const float * logits, int n_ctx, int n_vocab, int rep_pen_range, float rep_pen, float top_k, float top_a, float top_p, float typical_p, float tfs, float temp, std::mt19937 & rng, | |
int mirostat, float mirostat_tau, float mirostat_eta) | |
{ | |
int id = 0; | |
std::vector<llama_token_data> candidates; | |
candidates.reserve(n_vocab); | |
for (llama_token token_id = 0; token_id < n_vocab; token_id++) { | |
candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); | |
} | |
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false }; | |
// Apply penalties | |
auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), rep_pen_range), n_ctx); | |
llama_sample_repetition_penalty(nullptr, &candidates_p, | |
last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, | |
last_n_repeat, rep_pen); | |
// llama_sample_frequency_and_presence_penalties(nullptr, &candidates_p, | |
// last_n_tokens.data() + last_n_tokens.size() - last_n_repeat, | |
// last_n_repeat, alpha_frequency, alpha_presence); | |
if (temp <= 0) | |
{ | |
// Greedy sampling | |
id = llama_sample_token_greedy(nullptr, &candidates_p); | |
} | |
else | |
{ | |
if (mirostat == 1) | |
{ | |
static float mirostat_mu = 2.0f * mirostat_tau; | |
const int mirostat_m = 100; | |
llama_sample_temperature(nullptr, &candidates_p, temp); | |
id = sample_token_mirostat(n_vocab, &candidates_p, rng, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu); | |
} | |
else if (mirostat == 2) | |
{ | |
static float mirostat_mu = 2.0f * mirostat_tau; | |
llama_sample_temperature(nullptr, &candidates_p, temp); | |
id = sample_token_mirostat_v2(&candidates_p, rng, mirostat_tau, mirostat_eta, &mirostat_mu); | |
} | |
else | |
{ | |
// Temperature sampling | |
llama_sample_top_k(nullptr, &candidates_p, top_k,1); | |
sample_top_a(&candidates_p,top_a,1); | |
llama_sample_tail_free(nullptr, &candidates_p, tfs,1); | |
llama_sample_typical(nullptr, &candidates_p, typical_p,1); | |
llama_sample_top_p(nullptr, &candidates_p, top_p,1); | |
llama_sample_temperature(nullptr, &candidates_p, temp); | |
id = sample_token(&candidates_p, rng); | |
} | |
} | |
return id; | |
} | |
static std::string FileFormatTokenizeID(int id, FileFormat file_format) | |
{ | |
if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2) | |
{ | |
return std::string(llama_v2_token_to_str(llama_ctx_v2, id)); | |
} | |
else if (file_format == FileFormat::GGJT_3) | |
{ | |
return std::string(llama_token_to_str(llama_ctx_v3, id)); | |
} | |
else | |
{ | |
return vocab.id_to_token[id]; | |
} | |
} | |
ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in_file_format) | |
{ | |
ggml_time_init(); | |
file_format = in_file_format; | |
n_threads = params.n_threads = inputs.threads; | |
n_blasthreads = inputs.blasthreads; | |
n_batch = params.n_batch = inputs.batch_size; | |
modelname = params.model = inputs.model_filename; | |
useSmartContext = inputs.use_smartcontext; | |
debugmode = inputs.debugmode; | |
unbanTokens = inputs.unban_tokens; | |
blasbatchsize = inputs.blasbatchsize; | |
params.memory_f16 = inputs.f16_kv; | |
params.n_ctx = inputs.max_context_length; | |
neox_ctx_v2.hparams.n_ctx = gptj_ctx_v1.hparams.n_ctx = gptj_ctx_v2.hparams.n_ctx = gpt2_ctx_v1.hparams.n_ctx = gpt2_ctx_v2.hparams.n_ctx | |
= neox_ctx_v3.hparams.n_ctx = gptj_ctx_v3.hparams.n_ctx = gptj_ctx_v3.hparams.n_ctx = mpt_ctx_v3.hparams.n_ctx = params.n_ctx; | |
printf("System Info: %s\n", llama_print_system_info()); | |
SetQuantsUnshuffled(false); | |
if(file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2) | |
{ | |
//newer format has bit unshuffling | |
SetQuantsUnshuffled(file_format == FileFormat::GGJT_2); | |
llama_ctx_params_v2 = llama_v2_context_default_params(); | |
llama_ctx_params_v2.n_ctx = inputs.max_context_length; | |
//llama_ctx_params.n_parts = -1; | |
llama_ctx_params_v2.seed = -1; | |
llama_ctx_params_v2.f16_kv = inputs.f16_kv; | |
llama_ctx_params_v2.logits_all = false; | |
llama_ctx_params_v2.use_mmap = inputs.use_mmap; | |
llama_ctx_params_v2.use_mlock = inputs.use_mlock; | |
llama_ctx_params_v2.n_gpu_layers = inputs.gpulayers; | |
llama_ctx_v2 = llama_v2_init_from_file(modelname.c_str(), llama_ctx_params_v2); | |
if (llama_ctx_v2 == NULL) | |
{ | |
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, modelname.c_str()); | |
return ModelLoadResult::FAIL; | |
} | |
printf("\n---\nWarning: Your model may be an OUTDATED format (ver %d). Please reconvert it for better results!\n---\n", file_format); | |
if (lora_filename != "") | |
{ | |
printf("\nAttempting to apply LORA adapter: %s\n", lora_filename.c_str()); | |
const char * lora_base_arg = NULL; | |
if (lora_base != "") { | |
printf("Using LORA base model: %s\n", lora_base.c_str()); | |
lora_base_arg = lora_base.c_str(); | |
} | |
int err = llama_v2_apply_lora_from_file(llama_ctx_v2, | |
lora_filename.c_str(), | |
lora_base_arg, | |
n_threads); | |
if (err != 0) | |
{ | |
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); | |
return ModelLoadResult::FAIL; | |
} | |
} | |
//determine mem per token | |
const std::vector<int> tmp = {1, 2, 3, 4}; | |
llama_v2_eval(llama_ctx_v2, tmp.data(), tmp.size(), 0, params.n_threads); | |
return ModelLoadResult::SUCCESS; | |
} | |
else if(file_format == FileFormat::GGJT_3) | |
{ | |
llama_ctx_params = llama_context_default_params(); | |
llama_ctx_params.n_ctx = inputs.max_context_length; | |
//llama_ctx_paran_parts = -1; | |
llama_ctx_params.seed = -1; | |
llama_ctx_params.f16_kv = inputs.f16_kv; | |
llama_ctx_params.logits_all = false; | |
llama_ctx_params.use_mmap = inputs.use_mmap; | |
llama_ctx_params.use_mlock = inputs.use_mlock; | |
llama_ctx_params.n_gpu_layers = inputs.gpulayers; | |
llama_ctx_v3 = llama_init_from_file(modelname.c_str(), llama_ctx_params); | |
if (llama_ctx_v3 == NULL) | |
{ | |
fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, modelname.c_str()); | |
return ModelLoadResult::FAIL; | |
} | |
if (lora_filename != "") | |
{ | |
printf("\nAttempting to apply LORA adapter: %s\n", lora_filename.c_str()); | |
int err = llama_apply_lora_from_file(llama_ctx_v3, | |
lora_filename.c_str(), | |
NULL, | |
n_threads); | |
if (err != 0) | |
{ | |
fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__); | |
return ModelLoadResult::FAIL; | |
} | |
} | |
//determine mem per token | |
const std::vector<int> tmp = {1, 2, 3, 4}; | |
auto er = llama_eval(llama_ctx_v3, tmp.data(), tmp.size(), 0, params.n_threads); | |
if(er!=0) | |
{ | |
printf("\nLLAMA EVAL returned nonzero!\n"); | |
} | |
return ModelLoadResult::SUCCESS; | |
} | |
else if (file_format == FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2) | |
{ | |
//start loading the models first | |
bool useWorldTokenizer = false; | |
if (file_format == FileFormat::RWKV_1) | |
{ | |
rwkv_ctx_v2 = rwkv_v2_init_from_file(modelname.c_str(), n_threads); | |
} | |
else //rwkv_2 | |
{ | |
rwkv_ctx_v3 = rwkv_init_from_file(modelname.c_str(), n_threads); | |
const struct rwkv_file_header & header = rwkv_ctx_v3->instance->model.header; | |
const size_t n_vocab = header.n_vocab; | |
printf("\nDetected Vocab: %d",n_vocab); | |
if(n_vocab>60000) | |
{ | |
printf("\nUsing WORLD TOKENIZER"); | |
useWorldTokenizer = true; | |
} | |
} | |
std::string word; | |
if(useWorldTokenizer) | |
{ | |
read_rwkv_world_vocab(); | |
} | |
else | |
{ | |
read_rwkv_vocab(); | |
} | |
int vocabsiz = rwkv_vocab.size(); | |
for (int i = 0; i < vocabsiz; i++) | |
{ | |
uint32_t len; | |
word = rwkv_vocab[i]; | |
vocab.token_to_id[word] = i; | |
vocab.id_to_token[i] = word; | |
} | |
printf("\nRWKV Vocab: %u\n", vocabsiz); | |
logits.resize(vocabsiz); | |
if (file_format == FileFormat::RWKV_1) | |
{ | |
n_batch = 1; | |
//setup buffers for rwkv state | |
auto padding = 512u; | |
auto statebufsiz = rwkv_v2_get_state_buffer_element_count(rwkv_ctx_v2) * sizeof(float) + padding; | |
auto logitbufsiz = rwkv_v2_get_logits_buffer_element_count(rwkv_ctx_v2) * sizeof(float) + padding; | |
printf("\nRWKV old Init: State Buffer:%u, Logit Buffer:%u\n", statebufsiz, logitbufsiz); | |
rwkv_ctx_v2->state_out = (float *)malloc(statebufsiz); | |
rwkv_ctx_v2->logits_out = (float *)malloc(logitbufsiz); | |
rwkv_ctx_v2->state_in = nullptr; | |
bool testeval = rwkv_v2_eval(rwkv_ctx_v2, 0, rwkv_ctx_v2->state_in, rwkv_ctx_v2->state_out, rwkv_ctx_v2->logits_out); | |
if (!testeval) | |
{ | |
printf("\nError: RWKV old Init Eval Failed!\n"); | |
} | |
memcpy(logits.data(), rwkv_ctx_v2->logits_out, sizeof(float) * vocabsiz); | |
if (rwkv_ctx_v2 == NULL) | |
{ | |
return ModelLoadResult::FAIL; | |
} | |
return ModelLoadResult::SUCCESS; | |
} | |
else | |
{ | |
n_batch = 1; //do not use sequence mode to speedup until it is fixed | |
//setup buffers for rwkv state | |
auto padding = 512u; | |
auto statebufsiz = rwkv_get_state_buffer_element_count(rwkv_ctx_v3) * sizeof(float) + padding; | |
auto logitbufsiz = rwkv_get_logits_buffer_element_count(rwkv_ctx_v3) * sizeof(float) + padding; | |
printf("\nRWKV Init: State Buffer:%u, Logit Buffer:%u\n", statebufsiz, logitbufsiz); | |
rwkv_ctx_v3->state_out = (float *)malloc(statebufsiz); | |
rwkv_ctx_v3->logits_out = (float *)malloc(logitbufsiz); | |
rwkv_ctx_v3->state_in = nullptr; | |
bool testeval = rwkv_eval(rwkv_ctx_v3, 0, rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, rwkv_ctx_v3->logits_out); | |
if (!testeval) | |
{ | |
printf("\nError: RWKV Init Eval Failed!\n"); | |
} | |
memcpy(logits.data(), rwkv_ctx_v3->logits_out, sizeof(float) * vocabsiz); | |
if (rwkv_ctx_v3 == NULL) | |
{ | |
return ModelLoadResult::FAIL; | |
} | |
return ModelLoadResult::SUCCESS; | |
} | |
} | |
else if (file_format == FileFormat::GPT2_1) | |
{ | |
ModelLoadResult res = legacy_gpt2_model_load(params.model, gpt2_ctx_v1, vocab, file_format); | |
if(res==ModelLoadResult::FAIL) | |
{ | |
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); | |
return res; | |
} | |
else if(res==ModelLoadResult::RETRY_LOAD) | |
{ | |
printf("\nTensor Transposition Detected! Retrying GPT-2 model loading..."); | |
return res; | |
} | |
// determine the required inference memory per token: | |
legacy_gpt2_eval(gpt2_ctx_v1, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format); | |
return ModelLoadResult::SUCCESS; | |
} | |
else if (file_format == FileFormat::GPT2_2 || file_format==FileFormat::GPT2_3 || file_format==FileFormat::GPT2_4) | |
{ | |
if(file_format==FileFormat::GPT2_4) | |
{ | |
ModelLoadResult res = gpt2_model_load(params.model, gpt2_ctx_v3, vocab, file_format, inputs.gpulayers); | |
if(res==ModelLoadResult::FAIL) | |
{ | |
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); | |
return res; | |
} | |
else if(res==ModelLoadResult::RETRY_LOAD) | |
{ | |
printf("\nTensor Transposition Detected! Retrying GPT-2 model loading..."); | |
return res; | |
} | |
// determine the required inference memory per token: | |
gpt2_eval(gpt2_ctx_v3, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format); | |
return ModelLoadResult::SUCCESS; | |
} | |
else | |
{ | |
//newer format has bit unshuffling | |
SetQuantsUnshuffled(file_format == FileFormat::GPT2_3); | |
ModelLoadResult res = gpt2_v2_model_load(params.model, gpt2_ctx_v2, vocab, file_format, inputs.gpulayers); | |
if(res==ModelLoadResult::FAIL) | |
{ | |
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); | |
return res; | |
} | |
else if(res==ModelLoadResult::RETRY_LOAD) | |
{ | |
printf("\nTensor Transposition Detected! Retrying GPT-2 model loading..."); | |
return res; | |
} | |
// determine the required inference memory per token: | |
gpt2_v2_eval(gpt2_ctx_v2, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format); | |
return ModelLoadResult::SUCCESS; | |
} | |
} | |
else if (file_format == FileFormat::GPTJ_1 || file_format == FileFormat::GPTJ_2) | |
{ | |
ModelLoadResult res = legacy_gptj_model_load(params.model, gptj_ctx_v1, vocab, file_format); | |
if(res==ModelLoadResult::FAIL) | |
{ | |
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); | |
return res; | |
} | |
else if(res==ModelLoadResult::RETRY_LOAD) | |
{ | |
printf("\nTensor Transposition Detected! Retrying GPT-J model loading..."); | |
return res; | |
} | |
// determine the required inference memory per token: | |
legacy_gptj_eval(gptj_ctx_v1, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token, file_format); | |
//if the logits are NAN or duplicated, it means the model is incompatible | |
if(logits.size()>0 && IsNanCheck(logits[0])) | |
{ | |
printf("\nBad Logits detected! Retrying GPT-J model loading..."); | |
ggml_v1_free(gptj_ctx_v1.ctx); | |
return ModelLoadResult::RETRY_LOAD; | |
} | |
return ModelLoadResult::SUCCESS; | |
} | |
else if(file_format == FileFormat::GPTJ_3 || file_format == FileFormat::GPTJ_4 || file_format == FileFormat::GPTJ_5) | |
{ | |
if(file_format == FileFormat::GPTJ_5) | |
{ | |
ModelLoadResult loadresult = gptj_model_load(params.model, gptj_ctx_v3, vocab, inputs.gpulayers); | |
if (loadresult == ModelLoadResult::FAIL) | |
{ | |
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); | |
return loadresult; | |
} | |
else if (loadresult == ModelLoadResult::RETRY_LOAD) | |
{ | |
printf("\nTensor Transposition Detected! Retrying GPT-J model loading..."); | |
return loadresult; | |
} | |
// determine the required inference memory per token: | |
gptj_eval(gptj_ctx_v3, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); | |
//if the logits are NAN or duplicated, it means the model is incompatible | |
std::vector<float> oldlogits(logits); | |
//this is another hack because they change the library - we run the eval through the model | |
//twice and compare logits. if they give the same logits for different inputs, model is broken | |
gptj_eval(gptj_ctx_v3, params.n_threads, 0, {4, 5, 6, 7}, logits, mem_per_token); | |
if(logits.size()>0 && (IsNanCheck(logits[0]) || LogitsDuplicated(oldlogits,logits))) | |
{ | |
printf("\nBad Logits detected! Retrying GPT-J model loading..."); | |
ggml_free(gptj_ctx_v3.ctx); | |
return ModelLoadResult::RETRY_LOAD; | |
} | |
return ModelLoadResult::SUCCESS; | |
} | |
else | |
{ | |
//newer format has bit unshuffling | |
SetQuantsUnshuffled(file_format == FileFormat::GPTJ_4); | |
ModelLoadResult loadresult = gptj_v2_model_load(params.model, gptj_ctx_v2, vocab, inputs.gpulayers); | |
if (loadresult == ModelLoadResult::FAIL) | |
{ | |
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); | |
return loadresult; | |
} | |
else if (loadresult == ModelLoadResult::RETRY_LOAD) | |
{ | |
printf("\nTensor Transposition Detected! Retrying GPT-J model loading..."); | |
return loadresult; | |
} | |
// determine the required inference memory per token: | |
gptj_v2_eval(gptj_ctx_v2, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); | |
//if the logits are NAN or duplicated, it means the model is incompatible | |
std::vector<float> oldlogits(logits); | |
//this is another hack because they change the library - we run the eval through the model | |
//twice and compare logits. if they give the same logits for different inputs, model is broken | |
gptj_v2_eval(gptj_ctx_v2, params.n_threads, 0, {4, 5, 6, 7}, logits, mem_per_token); | |
if(logits.size()>0 && (IsNanCheck(logits[0]) || LogitsDuplicated(oldlogits,logits))) | |
{ | |
printf("\nBad Logits detected! Retrying GPT-J model loading..."); | |
ggml_v2_free(gptj_ctx_v2.ctx); | |
return ModelLoadResult::RETRY_LOAD; | |
} | |
return ModelLoadResult::SUCCESS; | |
} | |
} | |
else if(file_format==FileFormat::NEOX_1 || file_format==FileFormat::NEOX_2 || file_format==FileFormat::NEOX_3 || file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5|| file_format==FileFormat::NEOX_6|| file_format==FileFormat::NEOX_7) | |
{ | |
if(file_format==FileFormat::NEOX_6|| file_format==FileFormat::NEOX_7) | |
{ | |
ModelLoadResult res = gpt_neox_model_load(params.model, neox_ctx_v3, vocab, file_format); | |
if(res==ModelLoadResult::FAIL) | |
{ | |
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); | |
return res; | |
} | |
else if(res==ModelLoadResult::RETRY_LOAD) | |
{ | |
printf("\nIncorrect Tensor Size Detected! Retrying GPT-NeoX model loading..."); | |
return res; | |
} | |
// determine the required inference memory per token: | |
gpt_neox_eval(neox_ctx_v3, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); | |
return ModelLoadResult::SUCCESS; | |
} | |
else | |
{ | |
//newer format has bit unshuffling | |
SetQuantsUnshuffled(file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5); | |
ModelLoadResult res = gpt_neox_v2_model_load(params.model, neox_ctx_v2, vocab, file_format); | |
if(res==ModelLoadResult::FAIL) | |
{ | |
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); | |
return res; | |
} | |
else if(res==ModelLoadResult::RETRY_LOAD) | |
{ | |
printf("\nIncorrect Tensor Size Detected! Retrying GPT-NeoX model loading..."); | |
return res; | |
} | |
// determine the required inference memory per token: | |
gpt_neox_v2_eval(neox_ctx_v2, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token); | |
if(logits.size()>0 && file_format==FileFormat::NEOX_2 && !IsNanCheck(logits[0])) | |
{ | |
//run the black magic eval to determine if it's redpajama. VERY UGLY HACK! | |
std::vector<int> test_embd = ::gpt_tokenize(vocab, "1 2 3 4 5 6 7"); | |
auto orig_par_res = neox_ctx_v2.hparams.par_res; | |
neox_ctx_v2.hparams.par_res = 0; //test with residual false | |
gpt_neox_v2_eval(neox_ctx_v2, params.n_threads, 0, test_embd, logits, mem_per_token); | |
neox_ctx_v2.hparams.par_res = orig_par_res; | |
int topid = std::max_element(logits.begin(),logits.end())-logits.begin(); | |
std::string predicted = vocab.id_to_token[topid].c_str(); | |
auto findresult = predicted.find("8"); | |
if(findresult != std::string::npos && findresult<2) | |
{ | |
printf("\n---\nOld RedPajama NeoX Detected! Switching to new format! (use_parallel_residual=False)\n"); | |
ggml_v2_free(neox_ctx_v2.ctx); | |
return ModelLoadResult::RETRY_LOAD; | |
} | |
} | |
return ModelLoadResult::SUCCESS; | |
} | |
} | |
else if(file_format==FileFormat::MPT_1) | |
{ | |
bool res = mpt_model_load(params.model, mpt_ctx_v3, vocab); | |
if(res==false) | |
{ | |
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str()); | |
return ModelLoadResult::FAIL; | |
} | |
// determine the required inference memory per token: | |
mpt_eval(mpt_ctx_v3, params.n_threads, 0, { 0, 1, 2, 3 }, logits, false, mem_per_token); | |
return ModelLoadResult::SUCCESS; | |
} | |
else | |
{ | |
printf("\nUnknown Model, cannot load.\n"); | |
return ModelLoadResult::FAIL; | |
} | |
} | |
bool gpttype_generate_abort() | |
{ | |
remaining_tokens = 0; | |
return true; | |
} | |
const std::string & gpttype_get_pending_output() | |
{ | |
return concat_output; | |
} | |
generation_outputs gpttype_generate(const generation_inputs inputs, generation_outputs &output) | |
{ | |
stop_sequence.clear(); | |
for(int x=0;x<stop_token_max;++x) | |
{ | |
std::string stopper = inputs.stop_sequence[x]; | |
if(stopper!="") | |
{ | |
stop_sequence.push_back(stopper); | |
} | |
} | |
params.prompt = inputs.prompt; | |
params.seed = inputs.seed; | |
params.n_predict = inputs.max_length; | |
params.top_k = inputs.top_k; | |
params.top_p = inputs.top_p; | |
params.typical_p = inputs.typical_p; | |
params.tfs_z = inputs.tfs; | |
params.temp = inputs.temperature; | |
params.repeat_last_n = inputs.rep_pen_range; | |
params.repeat_penalty = inputs.rep_pen; | |
params.mirostat = inputs.mirostat; | |
params.mirostat_eta = inputs.mirostat_eta; | |
params.mirostat_tau = inputs.mirostat_tau; | |
params.n_ctx = inputs.max_context_length; | |
params.n_batch = n_batch; | |
params.n_threads = n_threads; | |
bool stream_sse = inputs.stream_sse; | |
generation_finished = false; // Set current generation status | |
generated_tokens.clear(); // New Generation, new tokens | |
if (params.repeat_last_n < 1) | |
{ | |
params.repeat_last_n = 1; | |
} | |
if (params.top_k < 1) | |
{ | |
params.top_k = 120; //to disable top_k we actually need to increase this value to a very high number | |
} | |
if (params.seed <= 0) | |
{ | |
params.seed = time(NULL); | |
} | |
// tokenize the prompt | |
std::vector<int> embd_inp; | |
if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2 || file_format == FileFormat::GGJT_3) | |
{ | |
params.prompt.insert(0, 1, ' '); | |
if(file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2 ) | |
{ | |
embd_inp = ::llama_v2_tokenize(llama_ctx_v2, params.prompt, true); | |
} | |
else if (file_format == FileFormat::GGML) | |
{ | |
embd_inp = ::legacy_llama_v2_tokenize(llama_ctx_v2, params.prompt, true); | |
} | |
else | |
{ | |
embd_inp = ::llama_tokenize(llama_ctx_v3, params.prompt, true); | |
} | |
} | |
else | |
{ | |
// tokenize the prompt | |
embd_inp = ::gpt_tokenize(vocab, params.prompt); | |
} | |
//truncate to front of the prompt if its too long | |
int32_t nctx = params.n_ctx; | |
if (embd_inp.size() + params.n_predict > nctx) | |
{ | |
int offset = embd_inp.size() - nctx + params.n_predict; | |
embd_inp = std::vector<int>(embd_inp.begin() + offset, embd_inp.end()); | |
} | |
//determine how much npast we have to rewind from the current state | |
std::vector<gpt_vocab::id> embd; | |
int last_n_size = params.repeat_last_n; | |
last_n_tokens.resize(last_n_size); | |
std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0); | |
n_past = 0; | |
if (file_format == FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2) | |
{ | |
ContextFastForward(current_context_tokens, embd_inp, n_past, last_n_tokens, nctx, smartcontext, false, true); | |
} | |
else | |
{ | |
ContextFastForward(current_context_tokens, embd_inp, n_past, last_n_tokens, nctx, smartcontext, useSmartContext, false); | |
} | |
//if using BLAS and prompt is big enough, switch to single thread and use a huge batch | |
bool approved_format = !(file_format == FileFormat::BADFORMAT || | |
file_format == FileFormat::GPT2_1 || | |
file_format == FileFormat::GPTJ_1 || | |
file_format == FileFormat::GPTJ_2 || | |
file_format == FileFormat::RWKV_1 || | |
file_format==FileFormat::RWKV_2); | |
bool blasmode = (approved_format && embd_inp.size() >= 32 && ggml_cpu_has_blas() && blasbatchsize!=-1); | |
// bool blasmode = false; | |
int original_batch = params.n_batch; | |
int original_threads = params.n_threads; | |
if (blasmode) | |
{ | |
//for non llama, limit to 256 | |
int bbs = blasbatchsize; | |
if (file_format != FileFormat::GGML && file_format != FileFormat::GGHF && file_format != FileFormat::GGJT && file_format != FileFormat::GGJT_2 && file_format != FileFormat::GGJT_3) | |
{ | |
bbs = (blasbatchsize > 256 ? 256 : blasbatchsize); | |
} | |
params.n_batch = bbs; //received reports of 1024 and above crashing on some models | |
if(!ggml_cpu_has_gpublas()) | |
{ | |
params.n_threads = 1; //do not limit here anymore. | |
} | |
else | |
{ | |
params.n_threads = n_blasthreads; | |
} | |
} | |
current_context_tokens.resize(n_past); | |
remaining_tokens = params.n_predict; | |
int stopper_unused_tokens = 0; | |
int input_consumed = 0; | |
std::mt19937 rng(params.seed); | |
concat_output = ""; | |
bool startedsampling = false; | |
timer_start(); | |
double time1 = 0, time2 = 0; | |
int32_t n_vocab = 0; | |
if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2) | |
{ | |
n_vocab = llama_v2_n_vocab(llama_ctx_v2); | |
} | |
else if(file_format == FileFormat::GGJT_3) | |
{ | |
n_vocab = llama_n_vocab(llama_ctx_v3); | |
} | |
else if (file_format == FileFormat::GPTJ_1 || file_format == FileFormat::GPTJ_2) | |
{ | |
n_vocab = gptj_ctx_v1.hparams.n_vocab; | |
} | |
else if(file_format == FileFormat::GPTJ_3 || file_format==FileFormat::GPTJ_4) | |
{ | |
n_vocab = gptj_ctx_v2.hparams.n_vocab; | |
} | |
else if(file_format==FileFormat::GPTJ_5) | |
{ | |
n_vocab = gptj_ctx_v3.hparams.n_vocab; | |
} | |
else if(file_format == FileFormat::GPT2_1) | |
{ | |
n_vocab = gpt2_ctx_v1.hparams.n_vocab; | |
} | |
else if(file_format == FileFormat::GPT2_2 || file_format==FileFormat::GPT2_3) | |
{ | |
n_vocab = gpt2_ctx_v2.hparams.n_vocab; | |
} | |
else if(file_format==FileFormat::GPT2_4) | |
{ | |
n_vocab = gpt2_ctx_v3.hparams.n_vocab; | |
} | |
else if(file_format == FileFormat::NEOX_1 || file_format == FileFormat::NEOX_2 || file_format == FileFormat::NEOX_3 || file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5) | |
{ | |
n_vocab = neox_ctx_v2.hparams.n_vocab; | |
} | |
else if( file_format==FileFormat::NEOX_6|| file_format==FileFormat::NEOX_7) | |
{ | |
n_vocab = neox_ctx_v3.hparams.n_vocab; | |
} | |
else if( file_format==FileFormat::MPT_1) | |
{ | |
n_vocab = mpt_ctx_v3.hparams.n_vocab; | |
} | |
else if(file_format == FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2) | |
{ | |
n_vocab = vocab.id_to_token.size(); //handled seperately | |
if(n_past==0) | |
{ | |
if(file_format == FileFormat::RWKV_1) | |
{ | |
rwkv_ctx_v2->state_in = nullptr; | |
} | |
else | |
{ | |
rwkv_ctx_v3->state_in = nullptr; | |
} | |
} | |
else | |
{ | |
if (file_format == FileFormat::RWKV_1) | |
{ | |
rwkv_ctx_v2->state_in = rwkv_ctx_v2->state_out; | |
} | |
else | |
{ | |
rwkv_ctx_v3->state_in = rwkv_ctx_v3->state_out; | |
} | |
//if it's empty, push in the final previous token | |
if(embd_inp.size()==0 && current_context_tokens.size()>0) | |
{ | |
embd_inp.push_back(current_context_tokens[current_context_tokens.size()-1]); | |
current_context_tokens.pop_back(); | |
} | |
} | |
} | |
else | |
{ | |
printf("Bad format!"); | |
} | |
printf("\n"); | |
if (debugmode) | |
{ | |
std::string outstr = ""; | |
printf("\n[Debug: Dump Input Tokens, format: %d]\n", file_format); | |
std::string tmp = ""; | |
for (auto id : embd_inp) | |
{ | |
tmp += "'" + FileFormatTokenizeID(id, file_format) + " (" + std::to_string(id) + ")', "; | |
} | |
::utreplace(tmp, "\n", "\\n"); | |
outstr += tmp; | |
outstr += "\n\n[Debug: Context Size = " + std::to_string(current_context_tokens.size()) + "]\n"; | |
tmp = ""; | |
for (auto id : current_context_tokens) | |
{ | |
tmp += "'" + FileFormatTokenizeID(id, file_format) + " (" + std::to_string(id) + ")', "; | |
} | |
::utreplace(tmp, "\n", "\\n"); | |
outstr += tmp; | |
printf("%s\n\n", outstr.c_str()); | |
} | |
while (remaining_tokens > 0) | |
{ | |
gpt_vocab::id id = 0; | |
// predict | |
unsigned int embdsize = embd.size(); | |
//print progress | |
if (!startedsampling) | |
{ | |
printf("\rProcessing Prompt%s (%d / %d tokens)", (blasmode ? " [BLAS]" : ""), input_consumed, embd_inp.size()); | |
} | |
fflush(stdout); | |
if (embdsize > 0) | |
{ | |
bool evalres = false; | |
if (file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2) | |
{ | |
evalres = (llama_v2_eval(llama_ctx_v2, embd.data(), embdsize, n_past, params.n_threads)==0); | |
} | |
else if(file_format == FileFormat::GGJT_3) | |
{ | |
evalres = (llama_eval(llama_ctx_v3, embd.data(), embdsize, n_past, params.n_threads)==0); | |
} | |
else if(file_format==FileFormat::RWKV_1 || file_format==FileFormat::RWKV_2) | |
{ | |
if (file_format == FileFormat::RWKV_1) | |
{ | |
evalres = rwkv_v2_eval(rwkv_ctx_v2, embd[0], rwkv_ctx_v2->state_in, rwkv_ctx_v2->state_out, rwkv_ctx_v2->logits_out); | |
memcpy(logits.data(), rwkv_ctx_v2->logits_out, sizeof(float) * rwkv_vocab.size()); | |
rwkv_ctx_v2->state_in = rwkv_ctx_v2->state_out; | |
} | |
else | |
{ | |
if(embd.size()>1) | |
{ | |
evalres = rwkv_eval_sequence(rwkv_ctx_v3, (uint32_t*)embd.data(), embd.size(), rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, rwkv_ctx_v3->logits_out); | |
} | |
else | |
{ | |
evalres = rwkv_eval(rwkv_ctx_v3, embd[0], rwkv_ctx_v3->state_in, rwkv_ctx_v3->state_out, rwkv_ctx_v3->logits_out); | |
} | |
memcpy(logits.data(), rwkv_ctx_v3->logits_out, sizeof(float) * rwkv_vocab.size()); | |
rwkv_ctx_v3->state_in = rwkv_ctx_v3->state_out; | |
} | |
} | |
else if(file_format==FileFormat::GPT2_1) | |
{ | |
evalres = legacy_gpt2_eval(gpt2_ctx_v1, params.n_threads, n_past, embd, logits, mem_per_token, file_format); | |
} | |
else if(file_format==FileFormat::GPT2_2 || file_format==FileFormat::GPT2_3) | |
{ | |
evalres = gpt2_v2_eval(gpt2_ctx_v2, params.n_threads, n_past, embd, logits, mem_per_token, file_format); | |
} | |
else if(file_format==FileFormat::GPT2_4) | |
{ | |
evalres = gpt2_eval(gpt2_ctx_v3, params.n_threads, n_past, embd, logits, mem_per_token, file_format); | |
} | |
else if(file_format==FileFormat::NEOX_1 || file_format == FileFormat::NEOX_2 || file_format == FileFormat::NEOX_3 || file_format==FileFormat::NEOX_4 || file_format==FileFormat::NEOX_5) | |
{ | |
evalres = gpt_neox_v2_eval(neox_ctx_v2, params.n_threads, n_past, embd, logits, mem_per_token); | |
} | |
else if(file_format==FileFormat::NEOX_6|| file_format==FileFormat::NEOX_7) | |
{ | |
evalres = gpt_neox_eval(neox_ctx_v3, params.n_threads, n_past, embd, logits, mem_per_token); | |
} | |
else if(file_format==FileFormat::GPTJ_1 || file_format==FileFormat::GPTJ_2) | |
{ | |
evalres = legacy_gptj_eval(gptj_ctx_v1, params.n_threads, n_past, embd, logits, mem_per_token, file_format); | |
} | |
else if(file_format==FileFormat::GPTJ_3 || file_format==FileFormat::GPTJ_4) | |
{ | |
evalres = gptj_v2_eval(gptj_ctx_v2, params.n_threads, n_past, embd, logits, mem_per_token); | |
} | |
else if(file_format==FileFormat::GPTJ_5) | |
{ | |
evalres = gptj_eval(gptj_ctx_v3, params.n_threads, n_past, embd, logits, mem_per_token); | |
} | |
else if(file_format==FileFormat::MPT_1) | |
{ | |
evalres = mpt_eval(mpt_ctx_v3, params.n_threads, n_past, embd, logits, false, mem_per_token); | |
} | |
else | |
{ | |
printf("\nCannot find eval function\n"); | |
} | |
if (!evalres) | |
{ | |
fprintf(stderr, "Failed to predict\n"); | |
snprintf(output.text, sizeof(output.text), "%s", ""); | |
output.status = 0; | |
generation_finished = true; | |
return output; | |
} | |
} | |
n_past += embd.size(); | |
embd.clear(); | |
if ((int)embd_inp.size() <= input_consumed) | |
{ | |
// out of user input, sample next token | |
const float top_k = params.top_k; | |
const float top_p = params.top_p; | |
const float temp = params.temp; | |
const float top_a = inputs.top_a; | |
const float repeat_penalty = params.repeat_penalty; | |
const float typical_p = params.typical_p; | |
const float tfs_z = params.tfs_z; | |
if (!startedsampling) | |
{ | |
startedsampling = true; | |
params.n_batch = original_batch; | |
params.n_threads = original_threads; | |
time1 = timer_check(); | |
timer_start(); | |
printf("\n"); | |
} | |
unsigned int eosID = 0; | |
float * logitsPtr; | |
if(file_format == FileFormat::GGML || file_format == FileFormat::GGHF || file_format == FileFormat::GGJT || file_format == FileFormat::GGJT_2 || file_format == FileFormat::GGJT_3) | |
{ | |
if(file_format == FileFormat::GGJT_3) | |
{ | |
logitsPtr = llama_get_logits(llama_ctx_v3); | |
} | |
else | |
{ | |
logitsPtr = llama_v2_get_logits(llama_ctx_v2); | |
} | |
eosID = llama_token_eos(); | |
if (!unbanTokens) | |
{ | |
// set the logit of the eos token (2) to zero to avoid sampling it | |
logitsPtr[eosID] = 0; | |
} | |
} | |
else | |
{ | |
logitsPtr = logits.data(); | |
if (!unbanTokens) | |
{ | |
//gpt2 uses negative logits, so we cant zero it | |
// set the logit of the eos token to minimum to avoid sampling it | |
if (file_format == FileFormat::GPT2_1 || | |
file_format == FileFormat::GPT2_2 || | |
file_format == FileFormat::GPT2_3 || | |
file_format == FileFormat::GPT2_4 || | |
file_format == FileFormat::GPTJ_1 || | |
file_format == FileFormat::GPTJ_2 || | |
file_format == FileFormat::GPTJ_3 || | |
file_format == FileFormat::GPTJ_4 || | |
file_format == FileFormat::GPTJ_5) | |
{ | |
eosID = 50256; | |
if(logits.size() > eosID) | |
{ | |
int topid = std::min_element(logits.begin(),logits.end())-logits.begin(); | |
logits[eosID] = (logits[topid] < 0 ? logits[topid] : 0); | |
} | |
else | |
{ | |
//special case, starcoder models use ID 0 for EOS | |
if (file_format == FileFormat::GPT2_3 || file_format == FileFormat::GPT2_4) | |
{ | |
eosID = 0; | |
int topid = std::min_element(logits.begin(), logits.end()) - logits.begin(); | |
logits[eosID] = (logits[topid] < 0 ? logits[topid] : 0); | |
} | |
} | |
} | |
// set the logit of the eos token (0) to minimum to avoid sampling it | |
if (file_format == FileFormat::RWKV_1 || | |
file_format == FileFormat::RWKV_2 || | |
file_format == FileFormat::NEOX_1 || | |
file_format == FileFormat::NEOX_2 || | |
file_format == FileFormat::NEOX_3 || | |
file_format == FileFormat::NEOX_4 || | |
file_format == FileFormat::NEOX_5 || | |
file_format == FileFormat::NEOX_6 || | |
file_format == FileFormat::NEOX_7 || | |
file_format == FileFormat::MPT_1) | |
{ | |
eosID = 0; | |
int topid = std::min_element(logits.begin(),logits.end())-logits.begin(); | |
logits[eosID] = (logits[topid] < 0 ? logits[topid] : 0); | |
} | |
} | |
} | |
id = SampleLogits(logitsPtr, nctx, n_vocab, last_n_size, repeat_penalty, | |
top_k, top_a, top_p, typical_p, tfs_z, temp, rng, | |
params.mirostat,params.mirostat_tau,params.mirostat_eta); | |
last_n_tokens.erase(last_n_tokens.begin()); | |
last_n_tokens.push_back(id); | |
current_context_tokens.push_back(id); | |
// add it to the context | |
embd.push_back(id); | |
// decrement remaining sampling budget | |
--remaining_tokens; | |
for (auto id : embd) | |
{ | |
std::string tokenizedstr = FileFormatTokenizeID(id, file_format); | |
if(stream_sse) | |
{ | |
generated_tokens.push_back(tokenizedstr); | |
} | |
concat_output += tokenizedstr; | |
} | |
if (startedsampling) | |
{ | |
printf("\rGenerating (%d / %d tokens)", (params.n_predict - remaining_tokens), params.n_predict); | |
} | |
if(debugmode && top_picks.size()>0) | |
{ | |
printf(" ["); | |
bool firstloop = true; | |
for (auto & pick : top_picks) | |
{ | |
if (!firstloop) | |
{ | |
printf(" "); | |
} | |
firstloop = false; | |
std::string tokenizedstr = FileFormatTokenizeID(pick.id, file_format); | |
::utreplace(tokenizedstr, "\n", "\\n"); | |
printf("(%s %.2f%%)", tokenizedstr.c_str(), pick.p*100); | |
} | |
printf("]\n"); | |
} | |
if(unbanTokens && id==eosID) | |
{ | |
printf("\n(EOS token triggered!)"); | |
remaining_tokens = 0; | |
} | |
for (const auto &matched : stop_sequence) | |
{ | |
if (concat_output.find(matched) != std::string::npos) | |
{ | |
stopper_unused_tokens = remaining_tokens; | |
remaining_tokens = 0; | |
printf("\n(Stop sequence triggered: <%s>)", matched.c_str()); | |
break; | |
} | |
} | |
fflush(stdout); | |
} | |
else | |
{ | |
// some user input remains from prompt or interaction, forward it to processing | |
while ((int)embd_inp.size() > input_consumed) | |
{ | |
embd.push_back(embd_inp[input_consumed]); | |
last_n_tokens.erase(last_n_tokens.begin()); | |
last_n_tokens.push_back(embd_inp[input_consumed]); | |
current_context_tokens.push_back(embd_inp[input_consumed]); | |
++input_consumed; | |
if ((int)embd.size() >= params.n_batch) | |
{ | |
break; | |
} | |
} | |
} | |
} | |
time2 = timer_check(); | |
float pt1 = (time1*1000.0/(embd_inp.size()==0?1:embd_inp.size())); | |
int realnpredict = params.n_predict-stopper_unused_tokens; | |
float pt2 = (time2*1000.0/(realnpredict==0?1:realnpredict)); | |
float tokens_per_second = (realnpredict == 0 ? 0 : realnpredict / (time1 + time2)); | |
printf("\nTime Taken - Processing:%.1fs (%.0fms/T), Generation:%.1fs (%.0fms/T), Total:%.1fs (%.1fT/s)", time1, pt1, time2, pt2, (time1 + time2), tokens_per_second); | |
fflush(stdout); | |
output.status = 1; | |
generation_finished = true; | |
snprintf(output.text, sizeof(output.text), "%s", concat_output.c_str()); | |
return output; | |
} | |