Spaces:
Sleeping
Sleeping
# import streamlit as st | |
# from transformers import pipeline | |
# from peft import AutoPeftModelForCausalLM | |
# from transformers import AutoTokenizer | |
# # Initialize the tokenizer first | |
# tokenizer = AutoTokenizer.from_pretrained("kskathe/finetuned-llama-text-summarization") | |
# alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
# ### Article: | |
# {} | |
# ### Highlights: | |
# {}""" | |
# # Streamlit interface for user input | |
# st.title("AI Article Summarizer") | |
# user_input = st.text_area("Enter the article text here:") | |
# if user_input: | |
# # Prepare the input using the user-provided text | |
# formatted_input = alpaca_prompt.format(user_input, "") # Highlights left blank for generation | |
# inputs = tokenizer([formatted_input], return_tensors="pt") | |
# # Load the model and move it to the same device | |
# text_model = AutoPeftModelForCausalLM.from_pretrained("kskathe/finetuned-llama-text-summarization") | |
# # Generate the output | |
# output = text_model.generate(**inputs, max_new_tokens=128) | |
# # Decode the output | |
# decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True) | |
# # Display the output | |
# st.write("### Highlights:") | |
# st.write(decoded_output[0]) | |
import streamlit as st | |
from transformers import pipeline | |
from peft import AutoPeftModelForCausalLM | |
from transformers import AutoTokenizer | |
# Initialize the tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("kskathe/finetuned-llama-text-summarization") | |
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. | |
### Article: | |
{} | |
### Highlights: | |
{}""" | |
# Input from the user | |
input_text = st.text_area("Enter the article content:") | |
formatted_input = alpaca_prompt.format(input_text, "") | |
if st.button("Generate Highlights"): | |
# Prepare the input | |
inputs = tokenizer([formatted_input], return_tensors="pt") | |
# Load the model without quantization and force CPU usage | |
text_model = AutoPeftModelForCausalLM.from_pretrained( | |
"kskathe/finetuned-llama-text-summarization", | |
device_map="cpu", # Force the model to run on CPU | |
load_in_8bit=False, # Disable 8-bit quantization if it was enabled | |
torch_dtype="float32" # Use float32 precision which is CPU friendly | |
) | |
# Generate the output | |
output = text_model.generate(**inputs, max_new_tokens=128) | |
# Decode the output | |
decoded_output = tokenizer.batch_decode(output, skip_special_tokens=True) | |
# Display the output | |
st.write(decoded_output) | |