ksvmuralidhar's picture
Update app.py
bdda6af verified
import os
import numpy as np
from requests import get
import streamlit as st
import cv2
from ultralytics import YOLO
import shutil
import easyocr
import imutils
PREDICTION_PATH = os.path.join('.', 'predictions')
@st.cache_resource
def load_od_model():
finetuned_model = YOLO('cc_detect_best.pt')
return finetuned_model
@st.cache_resource
def load_easyocr():
reader = easyocr.Reader(['en'])
return reader
def decode_text(type: str):
reader = load_easyocr()
output_crop_path = os.path.join(PREDICTION_PATH, 'predict', 'crops', type)
ocr_txt = ''
if os.path.exists(output_crop_path):
crop_file = os.listdir(output_crop_path)[0]
crop_img_path = os.path.join(output_crop_path, crop_file)
crop_img = cv2.imread(crop_img_path)
increase = cv2.resize(crop_img, None, fx = 2, fy = 2, interpolation = cv2.INTER_CUBIC)
if type == 'card_number':
increase = cv2.resize(crop_img, None, fx = 5, fy = 5, interpolation = cv2.INTER_CUBIC)
gray = cv2.cvtColor(increase, cv2.COLOR_BGR2GRAY)
value, thresh = cv2.threshold(gray,0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2))
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
# Find contours and remove small noise
cnts = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
for c in cnts:
area = cv2.contourArea(c)
if area < 50:
cv2.drawContours(opening, [c], -1, 0, -1)
# Invert
result = 255 - opening
cleaned_image = result
crop_ocr = reader.readtext(cleaned_image)
cleaned_image = cv2.resize(cleaned_image, None, fx = 0.5, fy = 0.5, interpolation = cv2.INTER_CUBIC)
if type == 'card_number':
cleaned_image = cv2.resize(cleaned_image, None, fx = 0.2, fy = 0.2, interpolation = cv2.INTER_CUBIC)
cv2.imwrite(crop_img_path, cleaned_image)
ocr_txt = ''.join([t for _, t, _ in crop_ocr])
ocr_txt_conf = np.round(np.mean([p for _, _, p in crop_ocr]), 4)
if type == 'card_number':
ocr_txt = ocr_txt.replace(' ', '')
col1, col2 = st.columns(2, gap='small')
with col1:
st.markdown(f"<h5>{type.replace('_', ' ').upper()}</h5>", unsafe_allow_html=True)
st.text(f"{ocr_txt.upper()} ({str(ocr_txt_conf)})")
with col2:
st.text(' ')
if type == 'card_number':
st.text(' ')
st.image(crop_img_path)
def inference(input_image_path: str):
finetuned_model = load_od_model()
results = finetuned_model.predict(input_image_path,
show=False,
save=True,
save_crop=True,
imgsz=640,
conf=0.6,
save_txt=True,
project= PREDICTION_PATH,
show_labels=True,
show_conf=True,
line_width=2,
exist_ok=True)
decode_text('card_number')
decode_text('holder_name')
decode_text('exp_date')
st.image(os.path.join(PREDICTION_PATH, 'predict', 'input.jpg'))
def files_cleanup(path_: str):
if os.path.exists(path_):
os.remove(path_)
if os.path.exists(PREDICTION_PATH):
shutil.rmtree(PREDICTION_PATH)
# @st.cache_resource
def get_upload_path():
upload_file_path = os.path.join('.', 'uploads')
if not os.path.exists(upload_file_path):
os.makedirs(upload_file_path)
upload_filename = "input.jpg"
upload_file_path = os.path.join(upload_file_path, upload_filename)
return upload_file_path
def process_input_image(img_url):
upload_file_path = get_upload_path()
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36'}
r = get(img_url, headers=headers)
arr = np.frombuffer(r.content, np.uint8)
input_image = cv2.imdecode(arr, cv2.IMREAD_UNCHANGED)
input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
input_image = cv2.resize(input_image, (640, 640))
cv2.imwrite(upload_file_path, cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR))
return upload_file_path
try:
files_cleanup(get_upload_path())
st.markdown("<h3>Credit Card Detection</h3>", unsafe_allow_html=True)
desc = '''YOLOv8 is fine-tuned to detect credit card number, holder's name and expiry date. Dataset used to fine-tune YOLOv8
can be found <a href="https://universe.roboflow.com/credit-cards-detection/credit_card_detect-wjmlc/dataset/2" target="_blank">
here</a>. The detected objects are cropped, processed and passed as inputs to EasyOCR for text recognition.
'''
st.markdown(desc, unsafe_allow_html=True)
img_url = st.text_input("Paste the image URL of a credit card:", "")
placeholder = st.empty()
if img_url:
placeholder.empty()
img_path = process_input_image(img_url)
inference(img_path)
files_cleanup(get_upload_path())
except Exception as e:
files_cleanup(get_upload_path())
st.error(f'An unexpected error occured: \n{e}')