Spaces:
Sleeping
Sleeping
ksvmuralidhar
commited on
Commit
•
f0d53ce
1
Parent(s):
2c6861c
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
from requests import get
|
4 |
+
import streamlit as st
|
5 |
+
import cv2
|
6 |
+
from ultralytics import YOLO
|
7 |
+
import shutil
|
8 |
+
import easyocr
|
9 |
+
import imutils
|
10 |
+
|
11 |
+
|
12 |
+
PREDICTION_PATH = os.path.join('.', 'predictions')
|
13 |
+
|
14 |
+
|
15 |
+
@st.cache_resource
|
16 |
+
def load_od_model():
|
17 |
+
finetuned_model = YOLO('cc_detect_best.pt')
|
18 |
+
return finetuned_model
|
19 |
+
|
20 |
+
|
21 |
+
@st.cache_resource
|
22 |
+
def load_easyocr():
|
23 |
+
reader = easyocr.Reader(['en'])
|
24 |
+
return reader
|
25 |
+
|
26 |
+
|
27 |
+
def decode_text(type: str):
|
28 |
+
reader = load_easyocr()
|
29 |
+
output_crop_path = os.path.join(PREDICTION_PATH, 'predict', 'crops', type)
|
30 |
+
ocr_txt = ''
|
31 |
+
if os.path.exists(output_crop_path):
|
32 |
+
crop_file = os.listdir(output_crop_path)[0]
|
33 |
+
crop_img_path = os.path.join(output_crop_path, crop_file)
|
34 |
+
crop_img = cv2.imread(crop_img_path)
|
35 |
+
|
36 |
+
increase = cv2.resize(crop_img, None, fx = 2, fy = 2, interpolation = cv2.INTER_CUBIC)
|
37 |
+
if type == 'card_number':
|
38 |
+
increase = cv2.resize(crop_img, None, fx = 5, fy = 5, interpolation = cv2.INTER_CUBIC)
|
39 |
+
|
40 |
+
gray = cv2.cvtColor(increase, cv2.COLOR_BGR2GRAY)
|
41 |
+
|
42 |
+
value, thresh = cv2.threshold(gray,0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
|
43 |
+
|
44 |
+
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2,2))
|
45 |
+
opening = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel, iterations=1)
|
46 |
+
|
47 |
+
# Find contours and remove small noise
|
48 |
+
cnts = cv2.findContours(opening, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
49 |
+
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
|
50 |
+
for c in cnts:
|
51 |
+
area = cv2.contourArea(c)
|
52 |
+
if area < 50:
|
53 |
+
cv2.drawContours(opening, [c], -1, 0, -1)
|
54 |
+
|
55 |
+
# Invert
|
56 |
+
result = 255 - opening
|
57 |
+
cleaned_image = result
|
58 |
+
|
59 |
+
crop_ocr = reader.readtext(cleaned_image)
|
60 |
+
|
61 |
+
cleaned_image = cv2.resize(cleaned_image, None, fx = 0.5, fy = 0.5, interpolation = cv2.INTER_CUBIC)
|
62 |
+
if type == 'card_number':
|
63 |
+
cleaned_image = cv2.resize(cleaned_image, None, fx = 0.2, fy = 0.2, interpolation = cv2.INTER_CUBIC)
|
64 |
+
cv2.imwrite(crop_img_path, cleaned_image)
|
65 |
+
|
66 |
+
|
67 |
+
ocr_txt = ''.join([t for _, t, _ in crop_ocr])
|
68 |
+
ocr_txt_conf = np.round(np.mean([p for _, _, p in crop_ocr]), 4)
|
69 |
+
|
70 |
+
if type == 'card_number':
|
71 |
+
ocr_txt = ocr_txt.replace(' ', '')
|
72 |
+
|
73 |
+
col1, col2 = st.columns(2, gap='small')
|
74 |
+
with col1:
|
75 |
+
st.markdown(f"<h5>{type.replace('_', ' ').upper()}</h5>", unsafe_allow_html=True)
|
76 |
+
st.text(f"{ocr_txt.upper()} ({str(ocr_txt_conf)})")
|
77 |
+
with col2:
|
78 |
+
st.text(' ')
|
79 |
+
if type == 'card_number':
|
80 |
+
st.text(' ')
|
81 |
+
st.image(crop_img_path)
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
def inference(input_image_path: str):
|
86 |
+
finetuned_model = load_od_model()
|
87 |
+
results = finetuned_model.predict(input_image_path,
|
88 |
+
show=False,
|
89 |
+
save=True,
|
90 |
+
save_crop=True,
|
91 |
+
imgsz=640,
|
92 |
+
conf=0.6,
|
93 |
+
save_txt=True,
|
94 |
+
project= PREDICTION_PATH,
|
95 |
+
show_labels=True,
|
96 |
+
show_conf=True,
|
97 |
+
line_width=2,
|
98 |
+
exist_ok=True)
|
99 |
+
|
100 |
+
decode_text('card_number')
|
101 |
+
decode_text('holder_name')
|
102 |
+
decode_text('exp_date')
|
103 |
+
|
104 |
+
st.image(os.path.join(PREDICTION_PATH, 'predict', 'input.jpg'))
|
105 |
+
|
106 |
+
|
107 |
+
def files_cleanup(path_: str):
|
108 |
+
if os.path.exists(path_):
|
109 |
+
os.remove(path_)
|
110 |
+
if os.path.exists(PREDICTION_PATH):
|
111 |
+
shutil.rmtree(PREDICTION_PATH)
|
112 |
+
|
113 |
+
|
114 |
+
@st.cache_resource
|
115 |
+
def get_upload_path():
|
116 |
+
upload_file_path = os.path.join('.', 'uploads')
|
117 |
+
if not os.path.exists(upload_file_path):
|
118 |
+
os.makedirs(upload_file_path)
|
119 |
+
upload_filename = "input.jpg"
|
120 |
+
upload_file_path = os.path.join(upload_file_path, upload_filename)
|
121 |
+
return upload_file_path
|
122 |
+
|
123 |
+
|
124 |
+
def process_input_image(img_url):
|
125 |
+
upload_file_path = get_upload_path()
|
126 |
+
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36'}
|
127 |
+
r = get(img_url, headers=headers)
|
128 |
+
arr = np.frombuffer(r.content, np.uint8)
|
129 |
+
input_image = cv2.imdecode(arr, cv2.IMREAD_UNCHANGED)
|
130 |
+
input_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2RGB)
|
131 |
+
input_image = cv2.resize(input_image, (640, 640))
|
132 |
+
cv2.imwrite(upload_file_path, cv2.cvtColor(input_image, cv2.COLOR_RGB2BGR))
|
133 |
+
return upload_file_path
|
134 |
+
|
135 |
+
|
136 |
+
try:
|
137 |
+
files_cleanup(get_upload_path())
|
138 |
+
st.markdown("<h3>Credit Card Detection</h3>", unsafe_allow_html=True)
|
139 |
+
desc = '''YOLOv8 is fine-tuned to detect credit card number, holder's name and expiry date. Dataset used to fine-tune YOLOv8
|
140 |
+
can be found <a href="https://universe.roboflow.com/credit-cards-detection/credit_card_detect-wjmlc/dataset/2" target="_blank">
|
141 |
+
here</a>. The detected objects are cropped, processed and passed as inputs to EasyOCR for text recognition.
|
142 |
+
'''
|
143 |
+
st.markdown(desc, unsafe_allow_html=True)
|
144 |
+
img_url = st.text_input("Paste the image URL of a credit card:", "")
|
145 |
+
placeholder = st.empty()
|
146 |
+
if img_url:
|
147 |
+
placeholder.empty()
|
148 |
+
img_path = process_input_image(img_url)
|
149 |
+
inference(img_path)
|
150 |
+
files_cleanup(get_upload_path())
|
151 |
+
|
152 |
+
|
153 |
+
except Exception as e:
|
154 |
+
files_cleanup(get_upload_path())
|
155 |
+
st.error(f'An unexpected error occured: \n{e}')
|