File size: 13,399 Bytes
92fd951
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from typing import List, Optional, Union, Tuple

import torch
import torch.nn.functional as F
from transformers import GPT2LMHeadModel, LogitsProcessorList, LogitsProcessor, PreTrainedTokenizer
from transformers.generation_utils import GenerationMixin, SampleOutput, SampleEncoderDecoderOutput, SampleDecoderOnlyOutput


class SelfDebiasingLogitsProcessor(LogitsProcessor):
    """This class represents a logits processor that applies self-debiasing."""

    def __init__(self, num_debiasing_prefixes: int, decay_constant: float = 50, epsilon: float = 0.01, debug: bool = False,
                 tokenizer: Optional[PreTrainedTokenizer] = None):
        """
        :param num_debiasing_prefixes: the number of debiasing prefixes used
        :param decay_constant: the decay constant (lambda in the paper)
        :param epsilon: the minimum factor by which each probability is multiplied
        :param debug: whether to print additional debugging output
        :param tokenizer: a tokenizer used to print debugging output
        """
        assert not debug or tokenizer, "If debug=True, a tokenizer must be passed to SelfDebiasingLogitsProcessor()"
        self.num_debiasing_prefixes = num_debiasing_prefixes
        self.decay_constant = decay_constant
        self.epsilon = epsilon
        self.debug = debug
        self.tokenizer = tokenizer

    def __call__(self, input_ids: torch.LongTensor,scores: torch.FloatTensor) -> torch.FloatTensor:
        batch_size = scores.shape[0] // (1 + self.num_debiasing_prefixes)
        regular_sentence_indices = range(batch_size)
        for regular_sentence_idx in regular_sentence_indices:
            bias_indices = self._get_bias_indices(regular_sentence_idx, batch_size)
            if bias_indices:
                self._debias_scores(scores, regular_sentence_idx, bias_indices)
        return scores

    def _get_bias_indices(self, regular_sentence_idx: int, batch_size: int) -> List[int]:
        """Returns the indices of all self-debiasing inputs for a regular input"""
        return [regular_sentence_idx + (prefix_idx + 1) * batch_size for prefix_idx in range(self.num_debiasing_prefixes)]

    def _debias_scores(self, scores: torch.FloatTensor, regular_sent_idx: int, bias_indices: List[int]) -> None:
        """Partially debiases the given scores considering a single sentence and the corresponding self-debiasing inputs"""
        logits_biased = [scores[bias_idx] for bias_idx in bias_indices]

        mask = self._generate_decay_mask(scores[regular_sent_idx], logits_biased)
        scores[regular_sent_idx] = torch.log(self._apply_decay_mask(scores[regular_sent_idx], mask))

        for debiasing_sent_idx in bias_indices:
            scores[debiasing_sent_idx] = scores[regular_sent_idx]

    def _apply_decay_mask(self, logits: torch.Tensor, decay_mask: torch.Tensor) -> torch.Tensor:
        """Applies exponential decay to a tensor of logits"""
        probabilities = logits.softmax(dim=-1)
        decay_mask = torch.exp(- decay_mask * self.decay_constant)
        decay_mask = torch.max(decay_mask, torch.tensor([self.epsilon], device=decay_mask.device))
        probabilities = probabilities * decay_mask
        probabilities = probabilities / probabilities.sum(dim=-1)
        return probabilities

    def _generate_decay_mask(self, logits_regular: torch.FloatTensor, logits_biased_list: List[torch.FloatTensor]) -> torch.Tensor:
        """Computes the alpha values (see paper) for each token and stores them in a mask tensor"""
        p_regular = logits_regular.softmax(dim=-1)
        p_biased = None

        for logits_biased in logits_biased_list:
            if p_biased is None:
                p_biased = logits_biased.softmax(dim=-1)
            else:
                p_biased = torch.max(p_biased, logits_biased.softmax(dim=-1))

        if self.debug:
            print(f'== Before Debiasing ==\n'
                  f'Top 5 predictions (regular): {self._get_most_likely_tokens(p_regular, k=5)}\n'
                  f'Top 5 predictions (biased): {self._get_most_likely_tokens(p_biased, k=5)}')

        mask = torch.max(p_biased - p_regular, torch.tensor([0.], device=p_regular.device))

        if self.debug:
            p_regular = self._apply_decay_mask(logits_regular, mask)
            print(f'== After Debiasing ==\n'
                  f'Top 5 predictions (regular): {self._get_most_likely_tokens(p_regular, k=5)}')

        return mask

    def _get_most_likely_tokens(self, probabilities_tensor: torch.Tensor, k: int) -> List[Tuple[str, float]]:
        """Returns the most likely tokens according to a tensor of probabilities"""
        assert len(probabilities_tensor.shape) == 1
        values, indices = torch.topk(probabilities_tensor, k=k, dim=-1)
        tokens = self.tokenizer.convert_ids_to_tokens(indices)
        return list(zip(tokens, [pv.item() for pv in values]))


class SelfDebiasingGPT2LMHeadModel(GPT2LMHeadModel, GenerationMixin):
    """
    This class represents a regular GPT2LMHeadModel that additionally has the capacity to perform self-debiasing. For self-debiasing, the
    init_logits_processor function must be called. Otherwise, this model just performs regular language modeling.
    """

    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.logits_processor = None  # type: Optional[SelfDebiasingLogitsProcessor]

    def init_logits_processor(self, *args, **kwargs):
        """Initialize the logits processor. For a list of arguments, see the self-debiasing logit processor's init function."""
        self.logits_processor = SelfDebiasingLogitsProcessor(*args, **kwargs)

    def _get_logits_processor(self, *args, **kwargs) -> LogitsProcessorList:
        logits_processor = super()._get_logits_processor(*args, **kwargs)
        if self.logits_processor is not None:
            logits_processor.append(self.logits_processor)
        return logits_processor

    def beam_sample(self, *args, **kwargs):
        raise NotImplementedError("Beam sampling is not implemented for self-debiasing models")

    def sample(self, input_ids: torch.LongTensor, logits_processor: Optional[LogitsProcessorList] = None,
               logits_warper: Optional[LogitsProcessorList] = None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None,
               eos_token_id: Optional[int] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
               output_scores: Optional[bool] = None, return_dict_in_generate: Optional[bool] = None, **model_kwargs) -> Union[
        SampleOutput, torch.LongTensor]:
        """
        This is a verbatim copy of the original implementation by huggingface, with a single modification to ensure that a text and all
        corresponding self-debiasing inputs always chose the same token to generate next. This modification is enclosed by the texts
        "BEGIN MODIFICATIONS" and "END MODIFICATIONS", respectively.
        """
        # init values
        logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
        logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
        max_length = max_length if max_length is not None else self.config.max_length
        pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
        eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
        output_scores = output_scores if output_scores is not None else self.config.output_scores
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        return_dict_in_generate = (
            return_dict_in_generate if return_dict_in_generate is not None else self.config.return_dict_in_generate
        )

        # init attention / hidden states / scores tuples
        scores = () if (return_dict_in_generate and output_scores) else None
        decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
        decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None

        # if model is an encoder-decoder, retrieve encoder attention weights and hidden states
        if return_dict_in_generate and self.config.is_encoder_decoder:
            encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
            encoder_hidden_states = (
                model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
            )

        # init sequence length tensors
        sequence_lengths, unfinished_sequences, cur_len = self._init_sequence_length_for_generation(
            input_ids, max_length
        )

        # auto-regressive generation
        while cur_len < max_length:
            # prepare model inputs
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)

            # forward pass to get next token
            outputs = self(
                **model_inputs,
                return_dict=True,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
            )
            next_token_logits = outputs.logits[:, -1, :]

            # pre-process distribution
            next_token_scores = logits_processor(input_ids, next_token_logits)
            next_token_scores = logits_warper(input_ids, next_token_scores)

            # Store scores, attentions and hidden_states when required
            if return_dict_in_generate:
                if output_scores:
                    scores += (next_token_scores,)
                if output_attentions:
                    decoder_attentions += (
                        (outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
                    )

                if output_hidden_states:
                    decoder_hidden_states += (
                        (outputs.decoder_hidden_states,)
                        if self.config.is_encoder_decoder
                        else (outputs.hidden_states,)
                    )

            # sample
            probs = F.softmax(next_token_scores, dim=-1)
            next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)

            # =========================
            # BEGIN MODIFICATIONS
            # the following modification to the sample method is necessary to ensure that each debiasing sentence is continued in the same
            # way as the original sentence
            if self.logits_processor is not None:
                batch_size = next_tokens.shape[0] // (1 + self.logits_processor.num_debiasing_prefixes)
                regular_sentence_indices = range(batch_size)
                for regular_sentence_idx in regular_sentence_indices:
                    debiasing_sentence_indices = self.logits_processor._get_bias_indices(regular_sentence_idx, batch_size)
                    for debiasing_sentence_idx in debiasing_sentence_indices:
                        next_tokens[debiasing_sentence_idx] = next_tokens[regular_sentence_idx]
            # END MODIFICATIONS
            # =========================

            # add code that transfomers next_tokens to tokens_to_add
            if eos_token_id is not None:
                assert pad_token_id is not None, "If eos_token_id is defined, make sure that pad_token_id is defined."
                next_tokens = next_tokens * unfinished_sequences + (pad_token_id) * (1 - unfinished_sequences)

            # add token and increase length by one
            input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
            cur_len = cur_len + 1

            # update sequence length
            if eos_token_id is not None:
                sequence_lengths, unfinished_sequences = self._update_seq_length_for_generation(
                    sequence_lengths, unfinished_sequences, cur_len, next_tokens == eos_token_id
                )

            # stop when there is a </s> in each sentence, or if we exceed the maximul length
            if unfinished_sequences.max() == 0:
                break

            # update model kwargs
            model_kwargs = self._update_model_kwargs_for_generation(
                outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
            )

        if return_dict_in_generate:
            if self.config.is_encoder_decoder:
                return SampleEncoderDecoderOutput(
                    sequences=input_ids,
                    scores=scores,
                    encoder_attentions=encoder_attentions,
                    encoder_hidden_states=encoder_hidden_states,
                    decoder_attentions=decoder_attentions,
                    decoder_hidden_states=decoder_hidden_states,
                )
            else:
                return SampleDecoderOnlyOutput(
                    sequences=input_ids,
                    scores=scores,
                    attentions=decoder_attentions,
                    hidden_states=decoder_hidden_states,
                )
        else:
            return input_ids