Spaces:
Runtime error
Runtime error
File size: 13,399 Bytes
92fd951 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
from typing import List, Optional, Union, Tuple
import torch
import torch.nn.functional as F
from transformers import GPT2LMHeadModel, LogitsProcessorList, LogitsProcessor, PreTrainedTokenizer
from transformers.generation_utils import GenerationMixin, SampleOutput, SampleEncoderDecoderOutput, SampleDecoderOnlyOutput
class SelfDebiasingLogitsProcessor(LogitsProcessor):
"""This class represents a logits processor that applies self-debiasing."""
def __init__(self, num_debiasing_prefixes: int, decay_constant: float = 50, epsilon: float = 0.01, debug: bool = False,
tokenizer: Optional[PreTrainedTokenizer] = None):
"""
:param num_debiasing_prefixes: the number of debiasing prefixes used
:param decay_constant: the decay constant (lambda in the paper)
:param epsilon: the minimum factor by which each probability is multiplied
:param debug: whether to print additional debugging output
:param tokenizer: a tokenizer used to print debugging output
"""
assert not debug or tokenizer, "If debug=True, a tokenizer must be passed to SelfDebiasingLogitsProcessor()"
self.num_debiasing_prefixes = num_debiasing_prefixes
self.decay_constant = decay_constant
self.epsilon = epsilon
self.debug = debug
self.tokenizer = tokenizer
def __call__(self, input_ids: torch.LongTensor,scores: torch.FloatTensor) -> torch.FloatTensor:
batch_size = scores.shape[0] // (1 + self.num_debiasing_prefixes)
regular_sentence_indices = range(batch_size)
for regular_sentence_idx in regular_sentence_indices:
bias_indices = self._get_bias_indices(regular_sentence_idx, batch_size)
if bias_indices:
self._debias_scores(scores, regular_sentence_idx, bias_indices)
return scores
def _get_bias_indices(self, regular_sentence_idx: int, batch_size: int) -> List[int]:
"""Returns the indices of all self-debiasing inputs for a regular input"""
return [regular_sentence_idx + (prefix_idx + 1) * batch_size for prefix_idx in range(self.num_debiasing_prefixes)]
def _debias_scores(self, scores: torch.FloatTensor, regular_sent_idx: int, bias_indices: List[int]) -> None:
"""Partially debiases the given scores considering a single sentence and the corresponding self-debiasing inputs"""
logits_biased = [scores[bias_idx] for bias_idx in bias_indices]
mask = self._generate_decay_mask(scores[regular_sent_idx], logits_biased)
scores[regular_sent_idx] = torch.log(self._apply_decay_mask(scores[regular_sent_idx], mask))
for debiasing_sent_idx in bias_indices:
scores[debiasing_sent_idx] = scores[regular_sent_idx]
def _apply_decay_mask(self, logits: torch.Tensor, decay_mask: torch.Tensor) -> torch.Tensor:
"""Applies exponential decay to a tensor of logits"""
probabilities = logits.softmax(dim=-1)
decay_mask = torch.exp(- decay_mask * self.decay_constant)
decay_mask = torch.max(decay_mask, torch.tensor([self.epsilon], device=decay_mask.device))
probabilities = probabilities * decay_mask
probabilities = probabilities / probabilities.sum(dim=-1)
return probabilities
def _generate_decay_mask(self, logits_regular: torch.FloatTensor, logits_biased_list: List[torch.FloatTensor]) -> torch.Tensor:
"""Computes the alpha values (see paper) for each token and stores them in a mask tensor"""
p_regular = logits_regular.softmax(dim=-1)
p_biased = None
for logits_biased in logits_biased_list:
if p_biased is None:
p_biased = logits_biased.softmax(dim=-1)
else:
p_biased = torch.max(p_biased, logits_biased.softmax(dim=-1))
if self.debug:
print(f'== Before Debiasing ==\n'
f'Top 5 predictions (regular): {self._get_most_likely_tokens(p_regular, k=5)}\n'
f'Top 5 predictions (biased): {self._get_most_likely_tokens(p_biased, k=5)}')
mask = torch.max(p_biased - p_regular, torch.tensor([0.], device=p_regular.device))
if self.debug:
p_regular = self._apply_decay_mask(logits_regular, mask)
print(f'== After Debiasing ==\n'
f'Top 5 predictions (regular): {self._get_most_likely_tokens(p_regular, k=5)}')
return mask
def _get_most_likely_tokens(self, probabilities_tensor: torch.Tensor, k: int) -> List[Tuple[str, float]]:
"""Returns the most likely tokens according to a tensor of probabilities"""
assert len(probabilities_tensor.shape) == 1
values, indices = torch.topk(probabilities_tensor, k=k, dim=-1)
tokens = self.tokenizer.convert_ids_to_tokens(indices)
return list(zip(tokens, [pv.item() for pv in values]))
class SelfDebiasingGPT2LMHeadModel(GPT2LMHeadModel, GenerationMixin):
"""
This class represents a regular GPT2LMHeadModel that additionally has the capacity to perform self-debiasing. For self-debiasing, the
init_logits_processor function must be called. Otherwise, this model just performs regular language modeling.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.logits_processor = None # type: Optional[SelfDebiasingLogitsProcessor]
def init_logits_processor(self, *args, **kwargs):
"""Initialize the logits processor. For a list of arguments, see the self-debiasing logit processor's init function."""
self.logits_processor = SelfDebiasingLogitsProcessor(*args, **kwargs)
def _get_logits_processor(self, *args, **kwargs) -> LogitsProcessorList:
logits_processor = super()._get_logits_processor(*args, **kwargs)
if self.logits_processor is not None:
logits_processor.append(self.logits_processor)
return logits_processor
def beam_sample(self, *args, **kwargs):
raise NotImplementedError("Beam sampling is not implemented for self-debiasing models")
def sample(self, input_ids: torch.LongTensor, logits_processor: Optional[LogitsProcessorList] = None,
logits_warper: Optional[LogitsProcessorList] = None, max_length: Optional[int] = None, pad_token_id: Optional[int] = None,
eos_token_id: Optional[int] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None,
output_scores: Optional[bool] = None, return_dict_in_generate: Optional[bool] = None, **model_kwargs) -> Union[
SampleOutput, torch.LongTensor]:
"""
This is a verbatim copy of the original implementation by huggingface, with a single modification to ensure that a text and all
corresponding self-debiasing inputs always chose the same token to generate next. This modification is enclosed by the texts
"BEGIN MODIFICATIONS" and "END MODIFICATIONS", respectively.
"""
# init values
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
logits_warper = logits_warper if logits_warper is not None else LogitsProcessorList()
max_length = max_length if max_length is not None else self.config.max_length
pad_token_id = pad_token_id if pad_token_id is not None else self.config.pad_token_id
eos_token_id = eos_token_id if eos_token_id is not None else self.config.eos_token_id
output_scores = output_scores if output_scores is not None else self.config.output_scores
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict_in_generate = (
return_dict_in_generate if return_dict_in_generate is not None else self.config.return_dict_in_generate
)
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and self.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
# init sequence length tensors
sequence_lengths, unfinished_sequences, cur_len = self._init_sequence_length_for_generation(
input_ids, max_length
)
# auto-regressive generation
while cur_len < max_length:
# prepare model inputs
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
next_token_logits = outputs.logits[:, -1, :]
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
next_token_scores = logits_warper(input_ids, next_token_scores)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.config.is_encoder_decoder
else (outputs.hidden_states,)
)
# sample
probs = F.softmax(next_token_scores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
# =========================
# BEGIN MODIFICATIONS
# the following modification to the sample method is necessary to ensure that each debiasing sentence is continued in the same
# way as the original sentence
if self.logits_processor is not None:
batch_size = next_tokens.shape[0] // (1 + self.logits_processor.num_debiasing_prefixes)
regular_sentence_indices = range(batch_size)
for regular_sentence_idx in regular_sentence_indices:
debiasing_sentence_indices = self.logits_processor._get_bias_indices(regular_sentence_idx, batch_size)
for debiasing_sentence_idx in debiasing_sentence_indices:
next_tokens[debiasing_sentence_idx] = next_tokens[regular_sentence_idx]
# END MODIFICATIONS
# =========================
# add code that transfomers next_tokens to tokens_to_add
if eos_token_id is not None:
assert pad_token_id is not None, "If eos_token_id is defined, make sure that pad_token_id is defined."
next_tokens = next_tokens * unfinished_sequences + (pad_token_id) * (1 - unfinished_sequences)
# add token and increase length by one
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
cur_len = cur_len + 1
# update sequence length
if eos_token_id is not None:
sequence_lengths, unfinished_sequences = self._update_seq_length_for_generation(
sequence_lengths, unfinished_sequences, cur_len, next_tokens == eos_token_id
)
# stop when there is a </s> in each sentence, or if we exceed the maximul length
if unfinished_sequences.max() == 0:
break
# update model kwargs
model_kwargs = self._update_model_kwargs_for_generation(
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
)
if return_dict_in_generate:
if self.config.is_encoder_decoder:
return SampleEncoderDecoderOutput(
sequences=input_ids,
scores=scores,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
decoder_hidden_states=decoder_hidden_states,
)
else:
return SampleDecoderOnlyOutput(
sequences=input_ids,
scores=scores,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
)
else:
return input_ids
|