File size: 9,131 Bytes
2d0a6cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
from __future__ import annotations
from dataclasses import dataclass
from abc import abstractmethod
import pickle
import os
from typing import Iterable, Callable, List, Dict, Optional, Type, TypeVar
from nlp4web_codebase.ir.data_loaders.dm import Document
from nlp4web_codebase.ir.models import BaseRetriever
from collections import Counter
import tqdm
import re
import math
import tqdm
import nltk

nltk.download("stopwords", quiet=True)
from nltk.corpus import stopwords as nltk_stopwords

LANGUAGE = "english"
word_splitter = re.compile(r"(?u)\b\w\w+\b").findall
stopwords = set(nltk_stopwords.words(LANGUAGE))


def word_splitting(text: str) -> List[str]:
    return word_splitter(text.lower())


def lemmatization(words: List[str]) -> List[str]:
    return words  # We ignore lemmatization here for simplicity


def simple_tokenize(text: str) -> List[str]:
    words = word_splitting(text)
    tokenized = list(filter(lambda w: w not in stopwords, words))
    tokenized = lemmatization(tokenized)
    return tokenized


T = TypeVar("T", bound="InvertedIndex")


@dataclass
class PostingList:
    term: str  # The term
    docid_postings: List[
        int
    ]  # docid_postings[i] means the docid (int) of the i-th associated posting
    tweight_postings: List[
        float
    ]  # tweight_postings[i] means the term weight (float) of the i-th associated posting


@dataclass
class InvertedIndex:
    posting_lists: List[PostingList]  # docid -> posting_list
    vocab: Dict[str, int]
    cid2docid: Dict[str, int]  # collection_id -> docid
    collection_ids: List[str]  # docid -> collection_id
    doc_texts: Optional[List[str]] = None  # docid -> document text

    def save(self, output_dir: str) -> None:
        os.makedirs(output_dir, exist_ok=True)
        with open(os.path.join(output_dir, "index.pkl"), "wb") as f:
            pickle.dump(self, f)

    @classmethod
    def from_saved(cls: Type[T], saved_dir: str) -> T:
        index = cls(
            posting_lists=[], vocab={}, cid2docid={}, collection_ids=[], doc_texts=None
        )
        with open(os.path.join(saved_dir, "index.pkl"), "rb") as f:
            index = pickle.load(f)
        return index


# The output of the counting function:
@dataclass
class Counting:
    posting_lists: List[PostingList]
    vocab: Dict[str, int]
    cid2docid: Dict[str, int]
    collection_ids: List[str]
    dfs: List[int]  # tid -> df
    dls: List[int]  # docid -> doc length
    avgdl: float
    nterms: int
    doc_texts: Optional[List[str]] = None


def run_counting(
    documents: Iterable[Document],
    tokenize_fn: Callable[[str], List[str]] = simple_tokenize,
    store_raw: bool = True,  # store the document text in doc_texts
    ndocs: Optional[int] = None,
    show_progress_bar: bool = True,
) -> Counting:
    """Counting TFs, DFs, doc_lengths, etc."""
    posting_lists: List[PostingList] = []
    vocab: Dict[str, int] = {}
    cid2docid: Dict[str, int] = {}
    collection_ids: List[str] = []
    dfs: List[int] = []  # tid -> df
    dls: List[int] = []  # docid -> doc length
    nterms: int = 0
    doc_texts: Optional[List[str]] = []
    for doc in tqdm.tqdm(
        documents,
        desc="Counting",
        total=ndocs,
        disable=not show_progress_bar,
    ):
        if doc.collection_id in cid2docid:
            continue
        collection_ids.append(doc.collection_id)
        docid = cid2docid.setdefault(doc.collection_id, len(cid2docid))
        toks = tokenize_fn(doc.text)
        tok2tf = Counter(toks)
        dls.append(sum(tok2tf.values()))
        for tok, tf in tok2tf.items():
            nterms += tf
            tid = vocab.get(tok, None)
            if tid is None:
                posting_lists.append(
                    PostingList(term=tok, docid_postings=[], tweight_postings=[])
                )
                tid = vocab.setdefault(tok, len(vocab))
            posting_lists[tid].docid_postings.append(docid)
            posting_lists[tid].tweight_postings.append(tf)
            if tid < len(dfs):
                dfs[tid] += 1
            else:
                dfs.append(0)
        if store_raw:
            doc_texts.append(doc.text)
        else:
            doc_texts = None
    return Counting(
        posting_lists=posting_lists,
        vocab=vocab,
        cid2docid=cid2docid,
        collection_ids=collection_ids,
        dfs=dfs,
        dls=dls,
        avgdl=sum(dls) / len(dls),
        nterms=nterms,
        doc_texts=doc_texts,
    )


@dataclass
class BM25Index(InvertedIndex):

    @staticmethod
    def tokenize(text: str) -> List[str]:
        return simple_tokenize(text)

    @staticmethod
    def cache_term_weights(
        posting_lists: List[PostingList],
        total_docs: int,
        avgdl: float,
        dfs: List[int],
        dls: List[int],
        k1: float,
        b: float,
    ) -> None:
        """Compute term weights and caching"""

        N = total_docs
        for tid, posting_list in enumerate(
            tqdm.tqdm(posting_lists, desc="Regularizing TFs")
        ):
            idf = BM25Index.calc_idf(df=dfs[tid], N=N)
            for i in range(len(posting_list.docid_postings)):
                docid = posting_list.docid_postings[i]
                tf = posting_list.tweight_postings[i]
                dl = dls[docid]
                regularized_tf = BM25Index.calc_regularized_tf(
                    tf=tf, dl=dl, avgdl=avgdl, k1=k1, b=b
                )
                posting_list.tweight_postings[i] = regularized_tf * idf

    @staticmethod
    def calc_regularized_tf(
        tf: int, dl: float, avgdl: float, k1: float, b: float
    ) -> float:
        return tf / (tf + k1 * (1 - b + b * dl / avgdl))

    @staticmethod
    def calc_idf(df: int, N: int):
        return math.log(1 + (N - df + 0.5) / (df + 0.5))

    @classmethod
    def build_from_documents(
        cls: Type[BM25Index],
        documents: Iterable[Document],
        store_raw: bool = True,
        output_dir: Optional[str] = None,
        ndocs: Optional[int] = None,
        show_progress_bar: bool = True,
        k1: float = 0.9,
        b: float = 0.4,
    ) -> BM25Index:
        # Counting TFs, DFs, doc_lengths, etc.:
        counting = run_counting(
            documents=documents,
            tokenize_fn=BM25Index.tokenize,
            store_raw=store_raw,
            ndocs=ndocs,
            show_progress_bar=show_progress_bar,
        )

        # Compute term weights and caching:
        posting_lists = counting.posting_lists
        total_docs = len(counting.cid2docid)
        BM25Index.cache_term_weights(
            posting_lists=posting_lists,
            total_docs=total_docs,
            avgdl=counting.avgdl,
            dfs=counting.dfs,
            dls=counting.dls,
            k1=k1,
            b=b,
        )

        # Assembly and save:
        index = BM25Index(
            posting_lists=posting_lists,
            vocab=counting.vocab,
            cid2docid=counting.cid2docid,
            collection_ids=counting.collection_ids,
            doc_texts=counting.doc_texts,
        )
        return index


class BaseInvertedIndexRetriever(BaseRetriever):

    @property
    @abstractmethod
    def index_class(self) -> Type[InvertedIndex]:
        pass

    def __init__(self, index_dir: str) -> None:
        self.index = self.index_class.from_saved(index_dir)

    def get_term_weights(self, query: str, cid: str) -> Dict[str, float]:
        toks = self.index.tokenize(query)
        target_docid = self.index.cid2docid[cid]
        term_weights = {}
        for tok in toks:
            if tok not in self.index.vocab:
                continue
            tid = self.index.vocab[tok]
            posting_list = self.index.posting_lists[tid]
            for docid, tweight in zip(
                posting_list.docid_postings, posting_list.tweight_postings
            ):
                if docid == target_docid:
                    term_weights[tok] = tweight
                    break
        return term_weights

    def score(self, query: str, cid: str) -> float:
        return sum(self.get_term_weights(query=query, cid=cid).values())

    def retrieve(self, query: str, topk: int = 10) -> Dict[str, float]:
        toks = self.index.tokenize(query)
        docid2score: Dict[int, float] = {}
        for tok in toks:
            if tok not in self.index.vocab:
                continue
            tid = self.index.vocab[tok]
            posting_list = self.index.posting_lists[tid]
            for docid, tweight in zip(
                posting_list.docid_postings, posting_list.tweight_postings
            ):
                docid2score.setdefault(docid, 0)
                docid2score[docid] += tweight
        docid2score = dict(
            sorted(docid2score.items(), key=lambda pair: pair[1], reverse=True)[:topk]
        )
        return {
            self.index.collection_ids[docid]: score
            for docid, score in docid2score.items()
        }


class BM25Retriever(BaseInvertedIndexRetriever):

    @property
    def index_class(self) -> Type[BM25Index]:
        return BM25Index