File size: 9,131 Bytes
2d0a6cc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
from __future__ import annotations
from dataclasses import dataclass
from abc import abstractmethod
import pickle
import os
from typing import Iterable, Callable, List, Dict, Optional, Type, TypeVar
from nlp4web_codebase.ir.data_loaders.dm import Document
from nlp4web_codebase.ir.models import BaseRetriever
from collections import Counter
import tqdm
import re
import math
import tqdm
import nltk
nltk.download("stopwords", quiet=True)
from nltk.corpus import stopwords as nltk_stopwords
LANGUAGE = "english"
word_splitter = re.compile(r"(?u)\b\w\w+\b").findall
stopwords = set(nltk_stopwords.words(LANGUAGE))
def word_splitting(text: str) -> List[str]:
return word_splitter(text.lower())
def lemmatization(words: List[str]) -> List[str]:
return words # We ignore lemmatization here for simplicity
def simple_tokenize(text: str) -> List[str]:
words = word_splitting(text)
tokenized = list(filter(lambda w: w not in stopwords, words))
tokenized = lemmatization(tokenized)
return tokenized
T = TypeVar("T", bound="InvertedIndex")
@dataclass
class PostingList:
term: str # The term
docid_postings: List[
int
] # docid_postings[i] means the docid (int) of the i-th associated posting
tweight_postings: List[
float
] # tweight_postings[i] means the term weight (float) of the i-th associated posting
@dataclass
class InvertedIndex:
posting_lists: List[PostingList] # docid -> posting_list
vocab: Dict[str, int]
cid2docid: Dict[str, int] # collection_id -> docid
collection_ids: List[str] # docid -> collection_id
doc_texts: Optional[List[str]] = None # docid -> document text
def save(self, output_dir: str) -> None:
os.makedirs(output_dir, exist_ok=True)
with open(os.path.join(output_dir, "index.pkl"), "wb") as f:
pickle.dump(self, f)
@classmethod
def from_saved(cls: Type[T], saved_dir: str) -> T:
index = cls(
posting_lists=[], vocab={}, cid2docid={}, collection_ids=[], doc_texts=None
)
with open(os.path.join(saved_dir, "index.pkl"), "rb") as f:
index = pickle.load(f)
return index
# The output of the counting function:
@dataclass
class Counting:
posting_lists: List[PostingList]
vocab: Dict[str, int]
cid2docid: Dict[str, int]
collection_ids: List[str]
dfs: List[int] # tid -> df
dls: List[int] # docid -> doc length
avgdl: float
nterms: int
doc_texts: Optional[List[str]] = None
def run_counting(
documents: Iterable[Document],
tokenize_fn: Callable[[str], List[str]] = simple_tokenize,
store_raw: bool = True, # store the document text in doc_texts
ndocs: Optional[int] = None,
show_progress_bar: bool = True,
) -> Counting:
"""Counting TFs, DFs, doc_lengths, etc."""
posting_lists: List[PostingList] = []
vocab: Dict[str, int] = {}
cid2docid: Dict[str, int] = {}
collection_ids: List[str] = []
dfs: List[int] = [] # tid -> df
dls: List[int] = [] # docid -> doc length
nterms: int = 0
doc_texts: Optional[List[str]] = []
for doc in tqdm.tqdm(
documents,
desc="Counting",
total=ndocs,
disable=not show_progress_bar,
):
if doc.collection_id in cid2docid:
continue
collection_ids.append(doc.collection_id)
docid = cid2docid.setdefault(doc.collection_id, len(cid2docid))
toks = tokenize_fn(doc.text)
tok2tf = Counter(toks)
dls.append(sum(tok2tf.values()))
for tok, tf in tok2tf.items():
nterms += tf
tid = vocab.get(tok, None)
if tid is None:
posting_lists.append(
PostingList(term=tok, docid_postings=[], tweight_postings=[])
)
tid = vocab.setdefault(tok, len(vocab))
posting_lists[tid].docid_postings.append(docid)
posting_lists[tid].tweight_postings.append(tf)
if tid < len(dfs):
dfs[tid] += 1
else:
dfs.append(0)
if store_raw:
doc_texts.append(doc.text)
else:
doc_texts = None
return Counting(
posting_lists=posting_lists,
vocab=vocab,
cid2docid=cid2docid,
collection_ids=collection_ids,
dfs=dfs,
dls=dls,
avgdl=sum(dls) / len(dls),
nterms=nterms,
doc_texts=doc_texts,
)
@dataclass
class BM25Index(InvertedIndex):
@staticmethod
def tokenize(text: str) -> List[str]:
return simple_tokenize(text)
@staticmethod
def cache_term_weights(
posting_lists: List[PostingList],
total_docs: int,
avgdl: float,
dfs: List[int],
dls: List[int],
k1: float,
b: float,
) -> None:
"""Compute term weights and caching"""
N = total_docs
for tid, posting_list in enumerate(
tqdm.tqdm(posting_lists, desc="Regularizing TFs")
):
idf = BM25Index.calc_idf(df=dfs[tid], N=N)
for i in range(len(posting_list.docid_postings)):
docid = posting_list.docid_postings[i]
tf = posting_list.tweight_postings[i]
dl = dls[docid]
regularized_tf = BM25Index.calc_regularized_tf(
tf=tf, dl=dl, avgdl=avgdl, k1=k1, b=b
)
posting_list.tweight_postings[i] = regularized_tf * idf
@staticmethod
def calc_regularized_tf(
tf: int, dl: float, avgdl: float, k1: float, b: float
) -> float:
return tf / (tf + k1 * (1 - b + b * dl / avgdl))
@staticmethod
def calc_idf(df: int, N: int):
return math.log(1 + (N - df + 0.5) / (df + 0.5))
@classmethod
def build_from_documents(
cls: Type[BM25Index],
documents: Iterable[Document],
store_raw: bool = True,
output_dir: Optional[str] = None,
ndocs: Optional[int] = None,
show_progress_bar: bool = True,
k1: float = 0.9,
b: float = 0.4,
) -> BM25Index:
# Counting TFs, DFs, doc_lengths, etc.:
counting = run_counting(
documents=documents,
tokenize_fn=BM25Index.tokenize,
store_raw=store_raw,
ndocs=ndocs,
show_progress_bar=show_progress_bar,
)
# Compute term weights and caching:
posting_lists = counting.posting_lists
total_docs = len(counting.cid2docid)
BM25Index.cache_term_weights(
posting_lists=posting_lists,
total_docs=total_docs,
avgdl=counting.avgdl,
dfs=counting.dfs,
dls=counting.dls,
k1=k1,
b=b,
)
# Assembly and save:
index = BM25Index(
posting_lists=posting_lists,
vocab=counting.vocab,
cid2docid=counting.cid2docid,
collection_ids=counting.collection_ids,
doc_texts=counting.doc_texts,
)
return index
class BaseInvertedIndexRetriever(BaseRetriever):
@property
@abstractmethod
def index_class(self) -> Type[InvertedIndex]:
pass
def __init__(self, index_dir: str) -> None:
self.index = self.index_class.from_saved(index_dir)
def get_term_weights(self, query: str, cid: str) -> Dict[str, float]:
toks = self.index.tokenize(query)
target_docid = self.index.cid2docid[cid]
term_weights = {}
for tok in toks:
if tok not in self.index.vocab:
continue
tid = self.index.vocab[tok]
posting_list = self.index.posting_lists[tid]
for docid, tweight in zip(
posting_list.docid_postings, posting_list.tweight_postings
):
if docid == target_docid:
term_weights[tok] = tweight
break
return term_weights
def score(self, query: str, cid: str) -> float:
return sum(self.get_term_weights(query=query, cid=cid).values())
def retrieve(self, query: str, topk: int = 10) -> Dict[str, float]:
toks = self.index.tokenize(query)
docid2score: Dict[int, float] = {}
for tok in toks:
if tok not in self.index.vocab:
continue
tid = self.index.vocab[tok]
posting_list = self.index.posting_lists[tid]
for docid, tweight in zip(
posting_list.docid_postings, posting_list.tweight_postings
):
docid2score.setdefault(docid, 0)
docid2score[docid] += tweight
docid2score = dict(
sorted(docid2score.items(), key=lambda pair: pair[1], reverse=True)[:topk]
)
return {
self.index.collection_ids[docid]: score
for docid, score in docid2score.items()
}
class BM25Retriever(BaseInvertedIndexRetriever):
@property
def index_class(self) -> Type[BM25Index]:
return BM25Index
|