init
Browse files- app.py +49 -0
- bm25.py +293 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from typing import Dict, List, Optional, TypedDict
|
3 |
+
from nlp4web_codebase.ir.data_loaders.sciq import load_sciq
|
4 |
+
from bm25 import BM25Index, BM25Retriever
|
5 |
+
|
6 |
+
sciq = load_sciq()
|
7 |
+
bm25_index = BM25Index.build_from_documents(
|
8 |
+
documents=iter(sciq.corpus),
|
9 |
+
ndocs=12160,
|
10 |
+
show_progress_bar=True,
|
11 |
+
k1=0.8, # Tuned on dev wrt. MAP@10
|
12 |
+
b=0.6, # Tuned on dev wrt. MAP@10
|
13 |
+
)
|
14 |
+
bm25_index.save("output/bm25_sciq_index")
|
15 |
+
bm25_retriever = BM25Retriever(index_dir="output/bm25_sciq_index")
|
16 |
+
|
17 |
+
|
18 |
+
class Hit(TypedDict):
|
19 |
+
cid: str
|
20 |
+
score: float
|
21 |
+
text: str
|
22 |
+
|
23 |
+
|
24 |
+
demo: Optional[gr.Interface] = None # Assign your gradio demo to this variable
|
25 |
+
return_type = List[Hit]
|
26 |
+
|
27 |
+
## YOUR_CODE_STARTS_HERE
|
28 |
+
cid2doc = {doc.collection_id: doc.text for doc in sciq.corpus}
|
29 |
+
|
30 |
+
|
31 |
+
def search(query: str) -> List[Hit]:
|
32 |
+
ranking: Dict[str, float] = bm25_retriever.retrieve(query)
|
33 |
+
# Sort the ranking by score in descending order
|
34 |
+
sorted_ranking = sorted(ranking.items(), key=lambda item: item[1], reverse=True)
|
35 |
+
hits = []
|
36 |
+
for cid, score in sorted_ranking:
|
37 |
+
hits.append(Hit(cid=cid, score=score, text=cid2doc[cid]))
|
38 |
+
return hits
|
39 |
+
|
40 |
+
|
41 |
+
demo = gr.Interface(
|
42 |
+
fn=search,
|
43 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter your query here..."),
|
44 |
+
outputs="text",
|
45 |
+
title="BM25 Retriever Search",
|
46 |
+
description="Search using a BM25 retriever on [SciQ](https://huggingface.co/datasets/allenai/sciq) and return top-10 ranked documents with scores.",
|
47 |
+
)
|
48 |
+
## YOUR_CODE_ENDS_HERE
|
49 |
+
demo.launch()
|
bm25.py
ADDED
@@ -0,0 +1,293 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from abc import abstractmethod
|
4 |
+
import pickle
|
5 |
+
import os
|
6 |
+
from typing import Iterable, Callable, List, Dict, Optional, Type, TypeVar
|
7 |
+
from nlp4web_codebase.ir.data_loaders.dm import Document
|
8 |
+
from nlp4web_codebase.ir.models import BaseRetriever
|
9 |
+
from collections import Counter
|
10 |
+
import tqdm
|
11 |
+
import re
|
12 |
+
import math
|
13 |
+
import tqdm
|
14 |
+
import nltk
|
15 |
+
|
16 |
+
nltk.download("stopwords", quiet=True)
|
17 |
+
from nltk.corpus import stopwords as nltk_stopwords
|
18 |
+
|
19 |
+
LANGUAGE = "english"
|
20 |
+
word_splitter = re.compile(r"(?u)\b\w\w+\b").findall
|
21 |
+
stopwords = set(nltk_stopwords.words(LANGUAGE))
|
22 |
+
|
23 |
+
|
24 |
+
def word_splitting(text: str) -> List[str]:
|
25 |
+
return word_splitter(text.lower())
|
26 |
+
|
27 |
+
|
28 |
+
def lemmatization(words: List[str]) -> List[str]:
|
29 |
+
return words # We ignore lemmatization here for simplicity
|
30 |
+
|
31 |
+
|
32 |
+
def simple_tokenize(text: str) -> List[str]:
|
33 |
+
words = word_splitting(text)
|
34 |
+
tokenized = list(filter(lambda w: w not in stopwords, words))
|
35 |
+
tokenized = lemmatization(tokenized)
|
36 |
+
return tokenized
|
37 |
+
|
38 |
+
|
39 |
+
T = TypeVar("T", bound="InvertedIndex")
|
40 |
+
|
41 |
+
|
42 |
+
@dataclass
|
43 |
+
class PostingList:
|
44 |
+
term: str # The term
|
45 |
+
docid_postings: List[
|
46 |
+
int
|
47 |
+
] # docid_postings[i] means the docid (int) of the i-th associated posting
|
48 |
+
tweight_postings: List[
|
49 |
+
float
|
50 |
+
] # tweight_postings[i] means the term weight (float) of the i-th associated posting
|
51 |
+
|
52 |
+
|
53 |
+
@dataclass
|
54 |
+
class InvertedIndex:
|
55 |
+
posting_lists: List[PostingList] # docid -> posting_list
|
56 |
+
vocab: Dict[str, int]
|
57 |
+
cid2docid: Dict[str, int] # collection_id -> docid
|
58 |
+
collection_ids: List[str] # docid -> collection_id
|
59 |
+
doc_texts: Optional[List[str]] = None # docid -> document text
|
60 |
+
|
61 |
+
def save(self, output_dir: str) -> None:
|
62 |
+
os.makedirs(output_dir, exist_ok=True)
|
63 |
+
with open(os.path.join(output_dir, "index.pkl"), "wb") as f:
|
64 |
+
pickle.dump(self, f)
|
65 |
+
|
66 |
+
@classmethod
|
67 |
+
def from_saved(cls: Type[T], saved_dir: str) -> T:
|
68 |
+
index = cls(
|
69 |
+
posting_lists=[], vocab={}, cid2docid={}, collection_ids=[], doc_texts=None
|
70 |
+
)
|
71 |
+
with open(os.path.join(saved_dir, "index.pkl"), "rb") as f:
|
72 |
+
index = pickle.load(f)
|
73 |
+
return index
|
74 |
+
|
75 |
+
|
76 |
+
# The output of the counting function:
|
77 |
+
@dataclass
|
78 |
+
class Counting:
|
79 |
+
posting_lists: List[PostingList]
|
80 |
+
vocab: Dict[str, int]
|
81 |
+
cid2docid: Dict[str, int]
|
82 |
+
collection_ids: List[str]
|
83 |
+
dfs: List[int] # tid -> df
|
84 |
+
dls: List[int] # docid -> doc length
|
85 |
+
avgdl: float
|
86 |
+
nterms: int
|
87 |
+
doc_texts: Optional[List[str]] = None
|
88 |
+
|
89 |
+
|
90 |
+
def run_counting(
|
91 |
+
documents: Iterable[Document],
|
92 |
+
tokenize_fn: Callable[[str], List[str]] = simple_tokenize,
|
93 |
+
store_raw: bool = True, # store the document text in doc_texts
|
94 |
+
ndocs: Optional[int] = None,
|
95 |
+
show_progress_bar: bool = True,
|
96 |
+
) -> Counting:
|
97 |
+
"""Counting TFs, DFs, doc_lengths, etc."""
|
98 |
+
posting_lists: List[PostingList] = []
|
99 |
+
vocab: Dict[str, int] = {}
|
100 |
+
cid2docid: Dict[str, int] = {}
|
101 |
+
collection_ids: List[str] = []
|
102 |
+
dfs: List[int] = [] # tid -> df
|
103 |
+
dls: List[int] = [] # docid -> doc length
|
104 |
+
nterms: int = 0
|
105 |
+
doc_texts: Optional[List[str]] = []
|
106 |
+
for doc in tqdm.tqdm(
|
107 |
+
documents,
|
108 |
+
desc="Counting",
|
109 |
+
total=ndocs,
|
110 |
+
disable=not show_progress_bar,
|
111 |
+
):
|
112 |
+
if doc.collection_id in cid2docid:
|
113 |
+
continue
|
114 |
+
collection_ids.append(doc.collection_id)
|
115 |
+
docid = cid2docid.setdefault(doc.collection_id, len(cid2docid))
|
116 |
+
toks = tokenize_fn(doc.text)
|
117 |
+
tok2tf = Counter(toks)
|
118 |
+
dls.append(sum(tok2tf.values()))
|
119 |
+
for tok, tf in tok2tf.items():
|
120 |
+
nterms += tf
|
121 |
+
tid = vocab.get(tok, None)
|
122 |
+
if tid is None:
|
123 |
+
posting_lists.append(
|
124 |
+
PostingList(term=tok, docid_postings=[], tweight_postings=[])
|
125 |
+
)
|
126 |
+
tid = vocab.setdefault(tok, len(vocab))
|
127 |
+
posting_lists[tid].docid_postings.append(docid)
|
128 |
+
posting_lists[tid].tweight_postings.append(tf)
|
129 |
+
if tid < len(dfs):
|
130 |
+
dfs[tid] += 1
|
131 |
+
else:
|
132 |
+
dfs.append(0)
|
133 |
+
if store_raw:
|
134 |
+
doc_texts.append(doc.text)
|
135 |
+
else:
|
136 |
+
doc_texts = None
|
137 |
+
return Counting(
|
138 |
+
posting_lists=posting_lists,
|
139 |
+
vocab=vocab,
|
140 |
+
cid2docid=cid2docid,
|
141 |
+
collection_ids=collection_ids,
|
142 |
+
dfs=dfs,
|
143 |
+
dls=dls,
|
144 |
+
avgdl=sum(dls) / len(dls),
|
145 |
+
nterms=nterms,
|
146 |
+
doc_texts=doc_texts,
|
147 |
+
)
|
148 |
+
|
149 |
+
|
150 |
+
@dataclass
|
151 |
+
class BM25Index(InvertedIndex):
|
152 |
+
|
153 |
+
@staticmethod
|
154 |
+
def tokenize(text: str) -> List[str]:
|
155 |
+
return simple_tokenize(text)
|
156 |
+
|
157 |
+
@staticmethod
|
158 |
+
def cache_term_weights(
|
159 |
+
posting_lists: List[PostingList],
|
160 |
+
total_docs: int,
|
161 |
+
avgdl: float,
|
162 |
+
dfs: List[int],
|
163 |
+
dls: List[int],
|
164 |
+
k1: float,
|
165 |
+
b: float,
|
166 |
+
) -> None:
|
167 |
+
"""Compute term weights and caching"""
|
168 |
+
|
169 |
+
N = total_docs
|
170 |
+
for tid, posting_list in enumerate(
|
171 |
+
tqdm.tqdm(posting_lists, desc="Regularizing TFs")
|
172 |
+
):
|
173 |
+
idf = BM25Index.calc_idf(df=dfs[tid], N=N)
|
174 |
+
for i in range(len(posting_list.docid_postings)):
|
175 |
+
docid = posting_list.docid_postings[i]
|
176 |
+
tf = posting_list.tweight_postings[i]
|
177 |
+
dl = dls[docid]
|
178 |
+
regularized_tf = BM25Index.calc_regularized_tf(
|
179 |
+
tf=tf, dl=dl, avgdl=avgdl, k1=k1, b=b
|
180 |
+
)
|
181 |
+
posting_list.tweight_postings[i] = regularized_tf * idf
|
182 |
+
|
183 |
+
@staticmethod
|
184 |
+
def calc_regularized_tf(
|
185 |
+
tf: int, dl: float, avgdl: float, k1: float, b: float
|
186 |
+
) -> float:
|
187 |
+
return tf / (tf + k1 * (1 - b + b * dl / avgdl))
|
188 |
+
|
189 |
+
@staticmethod
|
190 |
+
def calc_idf(df: int, N: int):
|
191 |
+
return math.log(1 + (N - df + 0.5) / (df + 0.5))
|
192 |
+
|
193 |
+
@classmethod
|
194 |
+
def build_from_documents(
|
195 |
+
cls: Type[BM25Index],
|
196 |
+
documents: Iterable[Document],
|
197 |
+
store_raw: bool = True,
|
198 |
+
output_dir: Optional[str] = None,
|
199 |
+
ndocs: Optional[int] = None,
|
200 |
+
show_progress_bar: bool = True,
|
201 |
+
k1: float = 0.9,
|
202 |
+
b: float = 0.4,
|
203 |
+
) -> BM25Index:
|
204 |
+
# Counting TFs, DFs, doc_lengths, etc.:
|
205 |
+
counting = run_counting(
|
206 |
+
documents=documents,
|
207 |
+
tokenize_fn=BM25Index.tokenize,
|
208 |
+
store_raw=store_raw,
|
209 |
+
ndocs=ndocs,
|
210 |
+
show_progress_bar=show_progress_bar,
|
211 |
+
)
|
212 |
+
|
213 |
+
# Compute term weights and caching:
|
214 |
+
posting_lists = counting.posting_lists
|
215 |
+
total_docs = len(counting.cid2docid)
|
216 |
+
BM25Index.cache_term_weights(
|
217 |
+
posting_lists=posting_lists,
|
218 |
+
total_docs=total_docs,
|
219 |
+
avgdl=counting.avgdl,
|
220 |
+
dfs=counting.dfs,
|
221 |
+
dls=counting.dls,
|
222 |
+
k1=k1,
|
223 |
+
b=b,
|
224 |
+
)
|
225 |
+
|
226 |
+
# Assembly and save:
|
227 |
+
index = BM25Index(
|
228 |
+
posting_lists=posting_lists,
|
229 |
+
vocab=counting.vocab,
|
230 |
+
cid2docid=counting.cid2docid,
|
231 |
+
collection_ids=counting.collection_ids,
|
232 |
+
doc_texts=counting.doc_texts,
|
233 |
+
)
|
234 |
+
return index
|
235 |
+
|
236 |
+
|
237 |
+
class BaseInvertedIndexRetriever(BaseRetriever):
|
238 |
+
|
239 |
+
@property
|
240 |
+
@abstractmethod
|
241 |
+
def index_class(self) -> Type[InvertedIndex]:
|
242 |
+
pass
|
243 |
+
|
244 |
+
def __init__(self, index_dir: str) -> None:
|
245 |
+
self.index = self.index_class.from_saved(index_dir)
|
246 |
+
|
247 |
+
def get_term_weights(self, query: str, cid: str) -> Dict[str, float]:
|
248 |
+
toks = self.index.tokenize(query)
|
249 |
+
target_docid = self.index.cid2docid[cid]
|
250 |
+
term_weights = {}
|
251 |
+
for tok in toks:
|
252 |
+
if tok not in self.index.vocab:
|
253 |
+
continue
|
254 |
+
tid = self.index.vocab[tok]
|
255 |
+
posting_list = self.index.posting_lists[tid]
|
256 |
+
for docid, tweight in zip(
|
257 |
+
posting_list.docid_postings, posting_list.tweight_postings
|
258 |
+
):
|
259 |
+
if docid == target_docid:
|
260 |
+
term_weights[tok] = tweight
|
261 |
+
break
|
262 |
+
return term_weights
|
263 |
+
|
264 |
+
def score(self, query: str, cid: str) -> float:
|
265 |
+
return sum(self.get_term_weights(query=query, cid=cid).values())
|
266 |
+
|
267 |
+
def retrieve(self, query: str, topk: int = 10) -> Dict[str, float]:
|
268 |
+
toks = self.index.tokenize(query)
|
269 |
+
docid2score: Dict[int, float] = {}
|
270 |
+
for tok in toks:
|
271 |
+
if tok not in self.index.vocab:
|
272 |
+
continue
|
273 |
+
tid = self.index.vocab[tok]
|
274 |
+
posting_list = self.index.posting_lists[tid]
|
275 |
+
for docid, tweight in zip(
|
276 |
+
posting_list.docid_postings, posting_list.tweight_postings
|
277 |
+
):
|
278 |
+
docid2score.setdefault(docid, 0)
|
279 |
+
docid2score[docid] += tweight
|
280 |
+
docid2score = dict(
|
281 |
+
sorted(docid2score.items(), key=lambda pair: pair[1], reverse=True)[:topk]
|
282 |
+
)
|
283 |
+
return {
|
284 |
+
self.index.collection_ids[docid]: score
|
285 |
+
for docid, score in docid2score.items()
|
286 |
+
}
|
287 |
+
|
288 |
+
|
289 |
+
class BM25Retriever(BaseInvertedIndexRetriever):
|
290 |
+
|
291 |
+
@property
|
292 |
+
def index_class(self) -> Type[BM25Index]:
|
293 |
+
return BM25Index
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
nlp4web-codebase @ git+https://github.com/kwang2049/nlp4web-codebase.git@00627e75881a5bb33a695c125d9b0c4016e735c1
|